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Optimal Local Estimates of Visual Motion in a Natural Environment
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Many organisms use visual signals to estimate motion, and these estimates typically are biased. Here, we
ask whether these biases may reflect physical rather than biological limitations. Using a camera-gyroscope
system, we sample the joint distribution of images and rotational motions in a natural environment, and
from this distribution we construct the optimal estimator of velocity based on local image intensities. Over
most of the natural dynamic range, this estimator exhibits the biases observed in neural and behavioral
responses. Thus, imputed errors in sensory processing may represent an optimal response to the physical

signals sampled from the environment.
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What limits the reliability of perception? On one hand,
the visual system is capable of counting single photons
[1]. On the other hand, perceptions are error prone, as
illustrated by visual illusions. A well-studied example is
visual motion estimation, where both neural [2-4] and
behavioral [5,6] responses are systematically biased.
These systematic errors could reflect limitations of the
biological hardware. But it could also be that the brain
performs a computation well matched to sensory signals,
based on physical data that themselves are too limited to
generate a veridical estimate [7]. In bright daylight, our
visual impression of the world is that everything is crisp
and clear, and it is hard to imagine that physical limits are
relevant. Our goal here is to test this assumption by
measuring the quality of inferences that can be drawn
from visual data under reasonably natural conditions, on a
scale relevant to brain function.

The best estimate of a feature of interest is determined by
its joint distribution with the available data. Here, we
consider angular velocity as the feature, while the data are
the "movies" collected by the eye or a camera. Our goal is
to sample their joint distribution directly and from these
samples construct the function which optimally transforms
visual inputs into velocity estimates. We simplify the
problem by focusing on a small patch of the visual world
and on situations where motion is dominated by rigid
rotations of the observer. To facilitate comparisons with a
biological example, we have built a camera that replicates
the geometrical parameters of the blowfly visual system but
with a larger collecting area, so we can measure intensities
more reliably; rotations of the camera are measured with
gyroscopes.
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Early models for visual motion estimation, formulated
by Hassenstein and Reichardt, were based on the behav-
ioral responses of beetles to simple motion stimuli [8,9],
and models for mammalian motion estimation are gener-
alizations of this “Reichardt correlator” [10,11]. These
models predict that velocity estimates are proportional to
the square of image contrast at low contrast, consistent with
measurements of behavioral [5] and neural [2,3] responses
in flies, even as single neurons can encode motion with a
precision close to the limits set by noise in the photo-
receptor array [12]. In the primate cortex [4,13] and human
perception [6], similar biases are observed. It is plausible
that very low contrast images provide little data about the
actual velocity, and so the best estimate will be biased
toward the velocity which is most likely a priori, and this is
zero. This argument can be made rigorous, showing that
biases similar to those of the Reichardt correlator are
features of the optimal motion estimator in the limit of
low signal-to-noise ratios [14—16].

It is intriguing that correlatorlike computations, with
their systematic errors, can emerge as optimal solutions to
the motion estimation problem. But, to claim that this
explains the estimation errors observed for real biological
systems, we need independent measurements of the signal
quality. More formally, at the core of all these theoretical
discussions is the joint distribution of movies and motions,
so we need a direct characterization of this distribution
under conditions relevant to the organism. Interest in
understanding human vision has led to considerable focus
on primates, but there is renewed emphasis on insects in
part because of genetic tools that make it possible to trace
the circuits effecting particular computations [17]. It is an
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FIG. 1. Camera-gyroscope design. (a) Camera headstage with
optical tube and gyroscopes (BEI Technology LCG50-00500-100
for yaw and pitch and Systron-Donner QRS130-01000-103 for
roll) mounted on orthogonal surfaces, allowing measurement of
yaw, pitch, and roll. (b) Schematic cross section of the camera,
with optical components and hexagonal array of 61 fibers
(Edmund Optics NT57-097) guiding light to 61 photodiodes
(Hamamatsu S8729-10). Photodiode and gyroscope data were
recorded simultaneously at 16-bit resolution (National Instru-
ments PCI 6031). (c) Optical point spread functions and their
position in the hexagonal array. (d) Equivalent contrast noise of
the camera (black line), showing the much lower noise floor in
the camera relative to fly photoreceptors (blue line) and their
postsynaptic targets, large monopolar cells (LMCs) (red line), the
putative inputs for motion estimation. (e) Probability density of
light intensities in our experiment, converted to fly photoreceptor
photon flux.

opportune time to ask not just what these circuits are
computing, but why.

The forward-facing area of the fly eye samples the world
through a hexagonal lattice of receptors with vertical row
orientation and spacing ¢, ~ 1.5°, each with a Gaussian
point spread function (width ¢ ~0.5°). We construct an
imaging system matching these parameters (Fig. 1),
with a 1000 samples per second readout of each photo-
detector [18].

Motion signals are due both to movement of the observer
and to movement of objects in the environment. With
objects far away, rotational self-motion is dominant, and
our focus is on analyzing yaw in these conditions. We
measure camera self-motion directly with a set of three
gyroscopes aligned along the cardinal axes.

Flying the instrument in Fig. 1 along a trajectory taken
by a real fly is challenging, and instead we take a half-hour
walk in the woods, waving the instrument [19]. Azimuthal
angular velocities are quite large, with a standard deviation
of ~100°/s, so that the distribution of velocities (Fig. 2,
left) covers the range experienced by flies in reasonably
straight flight, though not in acrobatic flight [20]; with a
correlation time of ~100 ms (Fig. 2, right), the fluctuations
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FIG. 2. Statistics of azimuthal (yaw) velocities. Left: Proba-
bility distribution of instantaneous velocities. Error bars are
standard deviations across randomly chosen quarters of the
half-hour walk, and the red line is a Gaussian with the same
mean and variance as the data. Right: Normalized autocorrelation
function. Dashed lines show =+ one standard deviation across
randomly chosen quarters of the data.

are a bit slower and perhaps more Gaussian than for
flies. The distributions of light intensities and their
(log) gradients are skewed, with roughly exponential tails
(Fig. 3), as reported [21].

Our data represent samples out of the joint distribution of
movies and motions, from which we must infer the
structure of the optimal motion estimator. For the fly’s
brain, input data are the photoreceptor voltages {V,(7)}.
These are filtered, noisy versions of the light intensities
in each pixel, {/,(¢)}, probabilistically related to the
unknown angular velocity v(r). All information about
velocity is contained in the conditional distribution
Plv(1)[{V,(?)}], and its structure constrains the computa-
tion needed to make optimal estimates [14].

As a first step, we ignore the filtering and noise in
the photoreceptors to work directly with the measured
intensities {7, () }. This is plausibly a good approximation
for bright conditions; in a fuller analysis, we can add back
the receptor noise, much of which is photon shot noise.

probabilty density

-10 0 10
derivative (s.d. = 1)

FIG. 3. Statistics of light intensities. Left: Distribution of (log)
intensity, collected over all 61 pixels. Right: Distributions of
spatial (blue line) and temporal (red line) derivatives of the (log)
intensity. Error bars are standard deviations across randomly
chosen quarters of the data; black dashed lines are Gaussians with
the same mean and variance as the data.
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With this approximation, all of the information available
about velocity at a moment ¢, is contained in the distri-
bution P[v(ty) = v|{I,()}], where the notation reminds us
that the optimal estimate depends on the pattern of light
intensities over some window of time surrounding 7. In the
examples below, this distribution always has a single well-
defined peak, so that the mean, median, and mode all are
very similar. To extract a single optimal estimate, we
choose the estimator that minimizes the mean square etror,
and this is the conditional mean

Dope(10) = / doP[o(ty) = o[{L (DY, (1)

The key idea is that, where a theory of optimal estimation
asks for an integral over the relevant distribution, we
approximate this as a sum over the measured samples,
as in Monte Carlo simulations.

Equation (1) is complicated, because the best estimate of
velocity depends on the dynamics of light intensities in all
the pixels. In insects and in us, estimates of global rota-
tional motion have long been thought to be built out of local
motion estimates, and neurons that extract these local
estimates now have been identified [17]. In the regular
lattice structure of the insect visual system, there is direct
evidence that motion estimation is dominated by compar-
isons between nearest neighbors [22], so that “local” really
refers to a single pixel and its neighbors. From nearest
neighbors, we can build lattice approximations to the first
and second spatial derivatives in the two cardinal direc-
tions, but we find that once the first derivative is known the
second derivative adds only a tiny amount of information
about velocity [23], so we neglect that here. To remove
dependence on the overall scene brightness, we take
derivatives of the log of the intensity.

In the absence of receptor cell noise, there should be little
need for temporal averaging, and we verify that the best
estimates are based on averages over very short windows
[24], allowing us to define a local approximation to the
temporal derivatives. Information about motion in a
particular direction and at a certain time is then dominated
by the gradient in that direction and by local time
derivatives, although motion in orthogonal directions can
constitute an effective noise source (see below). Thus, the
best local velocity estimate becomes

Popt = / dvP[v|0,In1(z), 9, In 1(1)]o, (2)

where d, and 0, represent the relevant spatial and temporal
derivatives, respectively, as described above. This is a map
from the plane [0, In1(¢),0,InI(1)] to the velocity .

For a pattern moving rigidly across the array of detectors,
I(¢,t) = f(¢p — vt), and we can recover the velocity by
taking a ratio of derivatives:

. B 0, Inl(r)
Pend = 75 () (3)

This “gradient model” of motion estimation gives veridical
estimates in an idealized setting [26], but the derivatives
and ratio make it susceptible to noise in the relation
between intensities and velocities. The Reichardt correlator
estimates velocity as the product of neighboring pixel
intensities filtered with differing time constants [5,8,9];
with (anti)symmetrization, this approximates [27]

Deor & O, InI (1) x 0, InI(t). (4)

Notice that ¥, is the behavior of an estimator, not the true
velocity. One can see the gradient and correlation models as
two limiting cases of a general optimal estimator [14],
suggesting that biases of motion estimation could be
features of optimal estimation [3,15,16,28,29]. To test
the theory, we need independent evidence that the visual
system operates in these limits.

The data we collect are samples from the joint
distribution P[v,d,InI(t),0,In1(t)] [24]. We discretize
the measured gradients into bins and compute the optimal
local motion estimator from Eq. (2); results are shown in
Fig. 4. At large values of the spatial gradient, contours of
constant velocity are approximately linear (e.g., the yellow
contour follows the black line), as expected in a gradient
model [Eq. (3)]. But at smaller values of the spatial
gradient, contours of constant velocity bend into curves
that approximate hyperbolas, which is correlatorlike
[Eq. (4)]. Importantly, the bulk of the data that we collect
is in the regime where curvature of the constant velocity
contours is prominent, echoing observations in Ref. [30].

100

300
200
50 - -
- 1100
~
S o 1 B
£
©
1{-100
-50
-200
100 A L _;' -300

-1 -0.5 0 0.5
-din(l)/d¢ (1/deg)

—_

FIG. 4. Optimal estimator of velocity as a function of local
spatial and temporal derivatives, from Eq. (2). The white box
encloses 90% of the data. The black line is Dg,q = 70 deg/s.
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FIG. 5. Optimal motion estimates at constant temporal (left:

9;InI =21 s7") or spatial (right: =9, In/ = 0.13 deg™") deriv-
atives. Blue points are optimal estimates, slices through Fig. 4;
error bars are standard deviations across random quarters of the
data. Blue lines are the predictions of the gradient model
[Eq. (3)], and red lines show the distribution of derivatives along
the slice (scaled for clarity).

We draw attention to this in Fig. 4 by outlining a region that
represents 90% of the data.

If we hold the time derivative of the local (log) light
intensity fixed and vary the spatial derivative, then corre-
latorlike models predict that the velocity estimate will vary
linearly [Eq. (4)], while gradient models predict that the
estimate will vary inversely [Eq. (3)]. Both models predict
that, if we hold the spatial derivative fixed, the estimate
should vary linearly with the temporal derivative. In
Fig. 5, we see linear dependencies at small values of the
derivatives, along both slices. We see signs of the inverse
dependence on the spatial derivative expected in the
gradient model but only at large derivatives, in the tail
of the distribution. In the bulk, the velocity estimate is
linear in both spatial and temporal derivatives and, hence,
quadratic in the overall image contrast, which is the
essential signature of the correlator model.

Optimal estimation is always a trade-off, and systematic
errors are optimal only insofar as they protect the estimate
against random errors. By construction, photon noise is not
a major source of randomness in our case (see Fig. 1), but
intensity variations induced by motion along other
directions, such as pitch, may also contribute noise.
Motion-sensitive neurons in the fly encode velocities with
significantly less precision in the presence of motions
orthogonal to their preferred direction [31], and our data
(not shown) indicate that this source of effective noise is
significant for the optimal estimator as well. If noise drives
the optimal estimator into the correlator regime, then the
estimates themselves should be noisy, and indeed, compar-
ing the time series predicted by our optimal estimator to the
velocity measured by the gyroscope, signal-to-noise ratios
are low, rising above unity only below 2 Hz, to a maximum
of ~3.

In summary, the relationship between the local dynamics
of images and movement velocities is sufficiently noisy that
optimal estimates are driven into a regime where systematic
errors are significant. In this regime, the optimal estimator

is approximately a correlator or motion energy estimator.
We have emphasized the connection to fly vision, but
similar considerations apply to primate vision when the
visual cortex computes motion on the scale of ~1.5°-3°
[32]. The idea that apparent errors of motion computation
might be optimal responses to physically limited signals is
an old one, both in flies [14] and in humans [15,16].
Figure 4 provides direct evidence that motion estimation in
a naturalistic context really is in the regime where corre-
lation is optimal.

Emphasizing the connections between statistical physics
and inference [33], our approach replaces the integrals
which appear in the theory of optimal estimation with
sums over samples from the natural environment, as in
Monte Carlo simulations. Along this path, there is much
more to be done. The crossover between correlatorlike and
gradientlike estimation should depend on the signal-to-
noise ratio, which we can vary by adding back photon shot
noise or focusing on periods with different typical values of
image contrast. Asymmetries in the underlying distribu-
tions should lead to asymmetries in the optimal estimator
[34], which are barely visible in Fig. 4 and should be
connected to the separate processing of on and off signals
[35]. It also will be interesting to understand the rules for
optimal combination of these local estimators into wide-
field motion signals. Finally, an important challenge is to
explore the relation between optimal motion estimators and
the structure of neural computation, quantitatively.
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