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Monopoles play a center role in gauge theories and topological matter. There are two fundamental types
of monopoles in physics: vector monopoles and tensor monopoles. Examples of vector monopoles include
the Dirac monopole in three dimensions and Yang monopole in five dimensions, which have been
extensively studied and observed in condensed matter or artificial systems. However, tensor monopoles are
less studied, and their observation has not been reported. Here we experimentally construct a tunable spin-1
Hamiltonian to generate a tensor monopole and then measure its unique features with superconducting
quantum circuits. The energy structure of a 4D Weyl-like Hamiltonian with threefold degenerate points
acting as tensor monopoles is imaged. Through quantum-metric measurements, we report the first
experiment that measures the Dixmier-Douady invariant, the topological charge of the tensor monopole.
Moreover, we observe topological phase transitions characterized by the topological Dixmier-Douady
invariant, rather than the Chern numbers as used for conventional monopoles in odd-dimensional spaces.
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Introduction.—Monopoles are fundamental topological
objects in high-energy physics and condensed matter
physics. In 1931, Dirac captured the physical importance
of magnetic monopoles (called Dirac monopoles) [1], and
proved the quantization of the electric charge. The Dirac
monopole was later recognized to be connected to the Berry
curvature and Berry phase in quantum mechanics [2]. The
topological nature of Dirac monopoles defined in three
dimensions is characterized by the first Chern number.
Other monopoles have been identified in gauge theory,
such as the ’t Hooft-Polyakov monopole [3,4] in Yang-
Mills theory and the Yang monopole [5]. The Yang
monopole is a non-Abelian extension of the Dirac monop-
ole in five dimensions and is characterized by the second
Chern number. Generally, a zoo of monopoles in (2nþ 1)-
dimensional (n ¼ 1; 2; 3…) flat spaces can be identified by
the n-order Chern numbers, which are given by the integral
of the corresponding field strength associated with a
monopole’s gauge field [6].
From the aspect of gauge fields, there are two funda-

mental types of monopoles in physics: vector monopoles
associated with vector gauge fields, such as the aforemen-
tioned Dirac and Yang monopoles, and tensor monopoles
associated with tensor gauge fields [7–10]. A representative
of the so-called “tensor monopole” is defined in a four-
dimensional (4D) space. The topological charge of a 4D
tensor monopole is given by the integral of the tensor gauge
field [10–13], known as the Dixmier-Douady (DD)

invariant [14,15]. Tensor monopoles play a key role in
string theory, where currents naturally couple to a tensor
gauge field [16–18]. Recently, Palumbo and Goldman
proposed a realistic three-band model defined over a 4D
parameter space to generate tensor monopoles [11,12],
whose topological charges could be extracted from the
generalized Berry curvature by measuring the quantum
metric [19–23]. The quantum metric in engineered quan-
tum systems can be measured through periodic driving
[24,25], sudden quench [26], and spin texture [27,28].
So far, monopoles have not been observed for real

particles. However, they can emerge in condensed-matter
materials [29,30] or be engineered in certain artificial
systems with effective gauge fields [31–34]. In these
systems, monopoles are usually connected to the existence
of topological states. For instance, Weyl points in Weyl
semimetals can be viewed as fictitious Dirac monopoles in
momentum space [30]. The analog Dirac monopoles were
created in the synthetic electromagnetic field that arises in
the spin texture of atomic spinor condensates [35,36]. The
monopole field and the first Chern number were measured
in a 3D parameter space of spin-1=2 or spin-1 artificial
atoms [37–40]. A quantum-simulated Yang monopole was
observed in a 5D parameter space built from an atomic
condensate’s internal states, and the second Chern number
as its topological charge was measured [41]. Although the
fundamental importance of singularity points associated
with tensor gauge fields was theoretically revealed in
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high-energy physics and condensed matter physics
[10–18], the tensor monopoles have not yet been realized
or simulated, and the corresponding topological DD
invariant has not been measured.
In this Letter, we fill this gap by experimentally

synthesizing tensor monopoles in a 4D parameter space
built in superconducting quantum circuits and measuring
its topological features. By engineering a tunable 4DWeyl-
like spin-1 Hamiltonian, we first image the energy structure
with threefold degenerate points acting as tensor mono-
poles. By characterizing the generalized curvature tensor
through quantum-metric measurements, we report the first
experiment to realize tensor gauge fields and measure the
DD invariant as the topological charge of a tensor mono-
pole. Finally, we engineer and observe the topological
phase transition characterized by the DD invariant, where
the manifold topology changes from a trivial state to a
nontrivial one with the modification of a parameter in the
Hamiltonian. Our work not only demonstrates the first
observation of tensor monopoles and measurement of the
DD invariant in a superconducting qudit, but also paves the
way to explore high-dimensional topological defects in
fully engineered quantum systems. The experimental
observation of tensor monopoles can further our under-
standing of tensor gauge fields and advance the search for
new exotic topological matter in condensed matter physics
and artificial quantum systems.
Tensor monopoles and tensor fields.—To establish a

basic understanding of the tensor monopole in 4D
parameter space, we begin by comparing it with the
well-known Dirac monopole in three dimensions, both
spanned by the parameters q, as shown in Fig. 1. For a
nondegenerate quantum state juqi, the geometric property
is captured by a quantum geometric tensor [19,42,43]:
χμν ¼ h∂qμuqjð1− juqihuqjÞj∂qνuqi ¼ gμν þ iF μν=2, where
the real and imaginary parts define the quantum metric
gμν ¼ gνμ and Berry curvature (gauge field) F μν ¼ −F νμ,
respectively. The Berry curvature F μν ¼ ∂μAν − ∂νAμ with
the Berry connection Aμ ¼ ihuqj∂qμuqi is associated with
the Berry phase. The quantum metric gμν defines the
quantum distance between nearby states juqi and juqþdqi
in the parameter space [19–23]: ds2 ¼ 1 − jhuqjuqþδqij2 ¼P

μν gμνdqμdqν, which is related to the wave function
overlap and can thus be directly measured.
For a Dirac monopole in 3D q space, in the context of

gauge field (electromagnetism), the Berry curvature F μν

can be viewed as the field strength (the Faraday tensor)
associated with the flux through the surrounding sphere S2

with radius r ¼ jqj. A minimal model realizing a Dirac
monopole is the Weyl HamiltonianH3D ¼ q · σ, where σ ¼
ðσx; σy; σzÞ are the Pauli matrices. The topological charge
of the Dirac monopole at q ¼ 0 is then given by the first
Chern number C1 ¼ ð1=2πÞ RS2 F ¼ 1. Notably, the Berry
curvature associated with a monopole is related to the

determinant of the metric tensor gμν defined on a sphere
with μ; ν ¼ fθ;ϕg: F μν ¼ 2ϵμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgμνÞ

p
, where ϵμν is the

Levi-Civita symbol, gθθ ¼ 1=4, gϕϕ ¼ sin2 θ=4, and
gθϕ ¼ 0.
Different from the odd-dimensional monopoles defined

with vector fields, a tensor monopole is defined in even
dimensions and associated with tensor fields. A tensor
monopole in 4D space q ¼ ðqx; qy; qz; qzÞ takes a (3-form)
curvature tensor Hμνλ [11,12], as the generalization of the
(2-form) Berry curvature F μν of the Dirac monopole. A
minimal model realizing such a tensor monopole is the
three-band Weyl-like Hamiltonian in 4D space [11]:

H4D ¼ q · λ ¼

2
64

0 qx − iqy 0

qx þ iqy 0 qz þ iqw
0 qz − iqw 0

3
75; ð1Þ

where λ ¼ ðλ1; λ2; λ6; λ�7Þ are 3 × 3 Gell-Mann matrices.
The energy spectrum is given by E0;� ¼ 0;�jqj, with a
triple-degenerate Weyl-like point at q ¼ ð0; 0; 0; 0Þ in 4D
parameter space. Such a Weyl-like node gives a tensor
monopole, surrounded by a 3D hypersphere S3. In terms of
hyperspherical coordinates fr; θ1; θ2;ϕg (θ1;2 ∈ ½0; π� and
ϕ ∈ ½0; 2π�), one has qx ¼ r cos θ1, qy ¼ r sin θ1 cos θ2,
qz ¼ r sin θ1 sin θ2 cosϕ, and qw ¼ r sin θ1 sin θ2 sinϕ.
The generalized curvature tensor as the field strength in
S3 is related to the quantum metric [11]:

(a) (b)

FIG. 1. Pictorial representations of (a) a Dirac monopole in 3D
parameter space q ¼ ðqx; qy; qzÞ; and (b) a tensor monopole in 4D
parameter space q ¼ ðqx; qy; qz; qwÞ. The two are defined as
pointlike sources of vector and tensor gauge fields, respectively.
The fluxes associated with the field strengths F μν ∝ r−2 and
Hμνλ ∝ r−3 through the surrounding 2D and 3D spheres (S2 and
S3) with radius r ¼ jqj are quantized in terms of two different
topological invariants, the first Chern number C1 ¼ 1 and the DD
invariant QDD ¼ 1, respectively. The related quantum metric
tensors gμν in S2 and S3 can be measured from the quench scheme.
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Hθ1θ2ϕ ¼ ϵθ1θ2ϕð4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

q
Þ; μ; ν ¼ fθ1; θ2;ϕg: ð2Þ

Here H4D has ϕ-rotation symmetry and thus Hθ1θ2ϕ is
independent of ϕ. For the ground state jψ−i of the system,
all matrix elements of the metric tensor g can be explicitly
obtained [see Eqs. (S7) in the Supplemental Material [44] ].
The tensor monopole generalizes the Dirac monopole to
four dimensions, and takes a topological charge associated
with the generalized curvature tensor Hθ1θ2ϕ:

QDD ¼ 1

2π2

Z
π

0

dθ1

Z
π

0

dθ2

Z
2π

0

dϕHθ1θ2ϕ ¼ 1; ð3Þ

which is the DD invariant [14,15]. Thus, to obtain the
topological charge QDD of a tensor monopole, one can
measure Hθ1θ2ϕ by revealing the quantum metric gμν.
In parameter space, the quantum distance ds2 is related to

the transition probability Pþ of the quantum state being
excited to other eigenstates after a sudden quench: Pþ ¼ ds2

[19,20,26]. One can thus measure the quantum metric via
transition probability by the sudden quench method. For a
quantum state initially prepared at q, to extract the diagonal
components gμμ at this point, one can suddenly quench the
system parameter to qþ δqeμ along the eμ direction, and
then measure the transition probability Pþ

μμ ¼ gμμδq2þ
Oðδq3Þ. To extract the off-diagonal components gμν
(μ ≠ ν), we apply a sudden quench to qþ δqeμ þ δqeν
along the eμ þ eν direction and then measure the prob-
ability Pþ

μν, which has the relation Pþ
μν − Pþ

μμ − Pþ
νν ¼

2gμνδq2 þOðδq3Þ. This sudden quench scheme will be
used to measure the quantum metric gμν in Eq. (2).
Experimental system.—We realize a highly tunable spin-

1 Hamiltonian with superconducting quantum circuits and
observe the energy spectrum and topological charge of the
tensor monopole in parameter space. The circuits consist of
a superconducting transmon qubit embedded in a 3D
aluminum cavity [39,40,48–51]. The resonance frequency
of the cavity TE101 mode is 9.0526 GHz. The whole
sample package is cooled in a dilution refrigerator to a base
temperature of 20 mK. The experimental setup for the qubit
control and measurement is well established [39,40,48–51].
The coupled transmon qubit and cavity exhibit anharmonic
multiple energy levels. In our experiments, the lowest four
energy levels j0i, j1i, j2i, and j3i are used and form a qudit
system shown in Fig. 2(a). Among them, three levels are
chosen to construct the Hamiltonian in Eq. (4), which are
f1; 2; 3g and f0; 1; 2g for measurements of energy struc-
tures and quantum metric, respectively [44]. Microwave
fields are applied to couple the four energy levels. The
transition frequencies between them are ω10=2π ¼ 7.1194,
ω12=2π ¼ 6.7747, and ω23=2π ¼ 6.3926 GHz, respec-
tively, which are independently determined by saturation
spectroscopy [44]. We apply microwave driving along x, y,
and z directions and realize the following effective
Hamiltonian in the rotating frame (ℏ ¼ 1) [44]

Hexp ¼
1

2

2
64

0 Ω1
x − iΩ1

y 0

Ω1
x þ iΩ1

y 0 Ω2
x þ iΩ2

y

0 Ω2
x − iΩ2

y 0

3
75; ð4Þ

where Ω1ð2Þ
x ðΩ1ð2Þ

y Þ is the Rabi frequency along the x (y)
axis of the Bloch sphere spanned by the corresponding
basis. For the case shown in Fig. 2(a), the system
parameters Ω1

x;y [ðΩ2
x;yÞ] are fully controlled by the ampli-

tude and phase of the microwave applied to couple j1i and
j2i (j2i and j3i). By varying these parameters, we can
create arbitrary three-level Hamiltonians given by Eq. (4).
In our experiments, we work with collections of
Hamiltonians represented in the 4D parameter space by
accurately designing microwave fields after calibration of
the parameters using Rabi oscillations and Ramsey
fringes [44].
Measuring energy structures of 4D Weyl model.—We

obtain the energy structure by measuring the spectrum of
the qudit system. After mapping the momentum space
of a 4D Weyl-semimetal Hamiltonian [12,44] to the
parameter space of the system Hamiltonian in Eq. (4),
we can visualize the simulated energy structures. We
design the Rabi frequencies fΩ1

x;Ω1
y;Ω2

x;Ω2
yg¼fΩ0ð3þΛ−

coskx−cosky−coskz−coskw;Ω0sinky;Ω0sinkz;Ω0sinkwg,
where Ω0 ¼ 5 MHz is the energy unit and the parameter Λ
is added to account for an offset in Ω1

x. As shown in
Fig. 2(a), the energy levels fj1i; j2i; j3ig are used to
construct Hexp and j0i is treated as a reference level for
spectrum probing. The dressed states under the coupled
microwaves are eigenstates of the Hamiltonian (4)
labeled jψ0i and jψ�i. Notably, the fictitious momenta

(a)

0                      2π

E
/Ω

0

1

-1          
kx

00
Probe

1

2

3

1 1
x yΩ Ω

2 2
x yΩ Ω

(b)

0                     2π 0                     2πkx

-1 2
4D Weyl semimetal Trivial insulator

Topological  transition

0 1

4D Weyl cone

, ,x y zk

wk

kx

-2-3 3
Trivial insulator

FIG. 2. Measurement of the energy structure of a 4D Weyl-like
semimetal. (a) Diagram of energy levels in superconducting
circuit. j1i, j2i, and j3i are used to construct the Hamiltonian with
irradiated microwaves, while j0i is for detecting the spectrum.
(b) Measured energy structure with different offsets Λ ¼ 0, 1, 2 in
the phase diagram.
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kx;y;z;w (the indexes x, y, z are not related to real spatial
coordinates of the experimental system) denote the 4D
parameter space controlled by varying Ω1;2

x;y in our system
and Λ plays the role of a fictitious Zeeman field for tuning
topological phase transition [12,44]. Similar mapping
procedures were used to simulate other condensed-matter
models in engineered quantum systems [37–41].
In our routine, we execute the spectrumlike measurement

and the resonant peaks of microwave absorption are detected
[44]. The frequency of the resonant peak is a function of
kx;y;z;w, and we are able to extract the energy structure of the
4D Weyl-like cone, as illustrated in the right panel of
Fig. 2(a). To demonstrate the topological properties, we
set ky;z;w ¼ 0 to emphasize the E-kx plane, where the phase
transition can be clearly observed. The system has two
different phases determined by the parameter Λ, as shown in
Fig. 2(b): the 4DWeyl-like semimetal with a pair of 4DWeyl
points when jΛj < 1 and the trivial gapped insulator when
jΛj > 1 [11,12]. At the critical points jΛj ¼ 1, two degen-
erate points merge and then disappear. The extracted energy
structures for Λ ¼ 0, 1, 2 are illustrated in Fig. 2(b), which
capture the features of the theoretical prediction with two
degenerate points at K� ¼ ð�π=2; 0; 0; 0Þ when Λ ¼ 0.
Near K�, one has the low-energy effective Hamiltonian
H�

4D ¼ �qxλ1 þ qyλ2 þ qzλ6 þ qwλ�7 describing a pair of
tensor monopoles with QDD ¼ �1 [44], where the sign in
front of qx determines the topological charges. Below we
focus on the tensor monopole described by Hþ

4D ¼ H4D in
Eq. (1) and QDD ¼ 1.
Measuring quantum metric by sudden quench.—We now

measure the quantum metric gμν (μ; ν ¼ fθ1; θ2;ϕg) of the
simulated tensor monopole using the sudden quench
scheme. We here work with the three lowest-energy levels
fj0i; j1i; j2ig without a reference level since the spectrum
probing is unnecessary [44]. We construct the Hamiltonian
in hypersphere coordinates with parameters in Eq. (4) as
fΩ1

x ¼ Ω0 cos θ1; Ω1
y ¼ Ω0 sin θ1 cos θ2; Ω2

x ¼ Ω0 sin θ1
sin θ2 cos ϕ; Ω2

y ¼ Ω0 sin θ1 sin θ2 sin ϕg [44]. The sys-
tem is initially prepared in the ground state jψ−i in the
parameter space q ¼ fθ1; θ2;ϕg with ϕ ¼ 0. The
Hamiltonian is then rapidly swept to Hðqþ δqÞ, followed
by state tomography to obtain the transition probability. We
set the quench parameter to qðtÞ ¼ qþ t=Tδqe along the e
direction, where the quench time T ¼ 9 ns and δq ¼ π=8
or π=16 [44]. For the diagonal term gμμ, only one parameter
ramps linearly in each quench with e ¼ feθ1 ; eθ2 ; eϕg,
respectively. For the off-diagonal term gμν (μ ≠ ν),
the parameters μ and ν ramp simultaneously, with e ¼
feθ1 þ eθ2 ; eθ1 þ eϕ; eθ2 þ eϕg. These ramp procedures
are illustrated in Fig. 1(b). From the final state’s
tomography, we extract the metric at q from the
measured transition probability: gμμ ≈ Pμμ=δq2 and
gμν ≈ ðPμν − Pμμ − PννÞ=2δq2. The measured gμν as a
function of θ1 and θ2 are shown in Fig. 3, which agree
well with theoretical results.

Observing topological phase transitions.—To further
study the tensor monopole, we observe topological phase
transition characterized by the tensor monopole charge in
our superconducting circuits. By designing microwave
fields on the qudit, we modify Eq. (4) by adding a tunable
offset Λ into the Ω1

x term, such that Ω1
x ¼ Ω0ðcos θ1 þ ΛÞ,

while other terms remain unchanged (without breaking the
ϕ-rotation symmetry). By measuring the metric tensor with
the sudden-quench approach, we can obtain the generalized
curvature Hθ1θ2ϕ and then integrate it to derive the
topological charge QDD. For offset Λ ¼ 0, the extracted
Hθ1θ2ϕ as a function of parameters θ1 and θ2 is shown in
Fig. 4(a). Experimental data (left) agree with theoretical
results (right). We finally calculate the QDD using Eq. (3)
and obtain QDD ¼ 0.92� 0.15 for Λ ¼ 0.
To study the topological phase transition, we execute the

protocol with varying Λ. The extracted DD invariant as a
function of Λ is shown in Fig. 4(b). When jΛj ¼ 0, the
manifold of the parameter space S3 surrounds the tensor
monopole in the center. With the increase of jΛj, the tensor
monopole moves along the qx axis. QDD ≈ 1 when jΛj < 1
for the S3 sphere surrounding the tensor monopole. QDD ≈
0 when jΛj > 1 since the monopole moves outside the
hypersphere manifold, indicating that the system is in the
trivial insulator phase. QDD declines rapidly to around
0 in the vicinity of Λ ¼ �1, which indicates a topological
phase transition. The accuracy of the topological charge
extracting from the sudden quench routine depends on the
ramp step. In Fig. 4(b), the numerical results with
δq ¼ π=1024 are plotted, which are very close to the
expected integer values. However, such a small step is
not feasible to implement in practice due to limitation of

0                    πθ1 θ1 θ1
0      π 0                     π

θ 2
θ 2

0

π

π

0

-0.1
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0.5
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0

π

0

π

θ 2
θ 2

(a)

(b)

1 1
g

2 2
g g

1 2
g

1
g

2
g

Exp.

Theo.

FIG. 3. Experimental and theoretical results of the quantum
metric gμν as a function of θ1 and θ2 for (a) diagonal components;
and (b) off-diagonal components.
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readout fidelity. With a larger δq, measurement obtained
from the sudden quench routine will deviate from ideal
values. For comparison, we perform the routine with δq ¼
π=8 and π=16, as demonstrated in Fig. 4(b). When δq
decreases, the deviation from the ideal quantized values
becomes smaller.
Conclusion.—In summary, we have created tensor

monopoles in 4D parameter space and explored their
unique properties using superconducting circuits. Our
experimental observation contributes to exploring tensor
gauge fields in quantum mechanics and creates a unique
approach in the search for exotic topological matter in
condensed matter physics and artificial systems, such as
topological semimetals and unconventional quasiparticles
beyond Dirac and Weyl fermions in high dimensions. By
coupling individual superconducting qudits, one can fur-
ther explore the geometric and topological properties of
quantum many-body systems.

This work was supported by the National Key
Research and Development Program of China (Grant
No. 2016YFA0301800), the National Natural Science
Foundation of China (Grants No. 11474153,
No. 91636218, No. 11890704, No. 61521001,

No. 12074180, No. U1830111, No. 12074179,
No. U1801661, and No. 11822403), the Key-Area
Research and Development Program of Guangdong
Province (Grants No. 2018B030326001 and
No. 2019B030330001), and the Key Project of Science
and Technology of Guangzhou (Grants No. 201804020055
and No. 2019050001).

X. T. and D.-W. Z contributed equally to this work.
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