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We establish the quantum fluctuations ΔQ2
B of the charge QB accumulated at the boundary of an

insulator as an integral tool to characterize phase transitions where a direct gap closes (and reopens),
typically occurring for insulators with topological properties. The power of this characterization lies in its
capability to treat different kinds of insulators on equal footing, being applicable to transitions between
topological and nontopological band, Anderson, and Mott insulators alike. In the vicinity of the phase
transition, we find a universal scaling ΔQ2

BðEgÞ as a function of the gap size Eg and determine its generic
form in various dimensions. For prototypical phase transitions with a massive Dirac-like bulk spectrum, we
demonstrate a scaling with the inverse gap in one dimension and a logarithmic one in two dimensions.
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Introduction.—In the last few decades, studies concern-
ing topological phases of matter, i.e., phases not charac-
terized by a Landau-type of order parameter, have moved to
the vanguard of condensed matter research [1–12]. A
topological phase transition separates two insulating phases
with different topological properties and is typically
accompanied by a band inversion at a special point in
quasimomentum space, where two bands are directly
coupled. Whereas standard metal-insulator transitions are
described via localization theories [13,14], a topological
phase transition probes specific low-energy features and is
characterized by a closing and reopening of a direct gap,
accompanied by a change of a topological index.
Independent of whether a topological index remains the
same or not at such a transition, the fundamental question
arises on how to embed these special phase transitions into
conventional ones, where the fluctuations of an appropriate
observable diverge at the transition, accompanied by the
divergence of a characteristic length scale. Close to the
transition, such a diverging length scale is naturally given
by ξg ¼ vF=Eg, where vF is a typical velocity and Eg
denotes the gap size. Going one step further, this poses the
interesting issue of whether fluctuations reveal universal
scaling laws as a function of ξg (or, equivalently, Eg).
Recently it has been proposed that the boundary charge

QB accumulated at a D − 1-dimensional flat surface of a
D-dimensional insulator probes universal properties of
topological insulators at low energies [15–20]. Close to
the transition point, it was demonstrated for one-
dimensional, single-channel models thatQB directly probes
the phase of the gap parameter (in units of 2π) independent

FIG. 1. Topological phase diagram characterized by the fluc-
tuations lpΔQ2

B (top) and by the number of zero-energy edge
states (bottom) for the SSH model studied experimentally in [23].
d is disorder strength and U denotes nearest-neighbor Coulomb
interaction. r ¼ t1=t2 < 1 defines the topological region for
d ¼ U ¼ 0. Phase boundaries between topological and non-
topological band, Anderson, and Mott insulators are all well
characterized by strongly enhanced fluctuations [25].
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of the gap size and reveals half-integer jumps at Weyl
semimetal-like transitions [17–19]. Therefore, one expects
strong fluctuations of QB at a (topological) phase transition
and it is quite surprising that these fluctuations have so far
not drawn much attention [15].
We remedy this substantial oversight in this Letter and

demonstrate that the fluctuations ΔQ2
B ¼ hQ̂2

Bi − hQ̂Bi2 of
the boundary charge themselves are the key to addressing
universal properties of (topological) phase transitions.
We identify a “universal regime" lp ≫ ξg ≫ a, where
lpΔQ2

BðξgÞ is a universal function of ξg, i.e., independent
of the microscopic details of the charge measurement
probe, described by a macroscopic length scale lp on
which the probe loses the contact to the sample (see below).
Universality implies independence from high-energy prop-
erties, relevant on the scale of the lattice spacing a. In the
regime close to the phase transition (ξg → ∞), we find that
lpΔQ2

B diverges in one and two dimensions, quite analog to
divergent fluctuations in conventional phase transitions.
Therefore, we suggest the fluctuations ofQB as a useful and
measurable tool to probe the phase diagram of topological
insulators. In Fig. 1 we begin by a compelling demon-
stration of the power of the suggested characterization,
focusing on the prototypical Su-Schrieffer-Heeger (SSH)
model [21,22] at half filling, including hopping disorder
(experimentally studied in Ref. [23]) and nearest-neighbor
Coulomb interaction. Details of the model are postponed
until Eq. (2), however, the general physics is dictated by the
topological index r being the ratio of the two hopping
amplitudes in the SSH model. Without disorder and
interaction, the topologically nontrivial phase transitions
to a trivial one at r ¼ 1. Including disorder in the hoppings
d, a topological Anderson insulator is stabilized even
beyond r ¼ 1 for weak disorder, while for strong disorder,
a trivial Anderson insulator is found. In the presence of
strong enough Coulomb interaction U, a Mott insulator is
established (for an interpretation of the Mott transition as a
topological one, see Ref. [24]). All of the different phase
boundaries between topological and nontopological band,
Anderson, and Mott insulators are signaled by diverging
boundary charge fluctuations lpΔQ2

B ∼ ξg. Our approach
thus unifies transitions between all of these different classes
of single-particle and correlated insulators. In addition,
below, we find that lpΔQ2

B shows a universal scaling as a
function of Eg for a variety of models. We find a striking
dependence on the dimensionality of the system, which we
exemplify for a massive Dirac-like low-energy spectrum.
We report a typical scaling with the inverse gap in one
dimension, logarithmic scaling in two-dimensional sys-
tems, and a monotonic increase of the fluctuations to a
finite value at zero-gap in three dimensions.
Model and boundary charge fluctuations.—We consider

a generic and finite D-dimensional tight-binding model
with a D − 1-dimensional flat surface. In the direction
perpendicular to the surface, we consider Ns ¼ L=a lattice

sites labeled by m ¼ 1;…; Ns with open boundary con-
ditions, where L denotes the system size. We take an
arbitrary extend and periodic boundary conditions in the
remaining (transverse) directions. We then define an
effective one-dimensional chain with two ends by absorb-
ing the remaining directional degrees of freedom into a
(large) multichannel character on each site, defining NB
transverse channels labeled by σ ¼ 1;…; NB (which can
additionally include, e.g., spin or orbital degrees of freedom
as well). The size of the unit cell of the effective one-
dimensional chain is denoted by Za, and x ¼ ma defines
the position of lattice site m; see Fig. 2 (bottom). We
consider zero temperature and fixed particle number N and
concentrate on the low-energy limit, where the gap Eg is
assumed to be small compared to the bandwidth or,
equivalently, ξg ¼ vF=Eg ≫ a. Generalizations are dis-
cussed in the Supplemental Material [26]. We choose units
ℏ ¼ e ¼ 1.
The boundary charge is a macroscopic observable

measured on scales much larger than the microscopic scale
ξg ≫ a. We describe the macroscopic average by an
envelope function fm characteristic for a charge measure-
ment probe, which falls off smoothly from unity to zero on
the macroscopic length scale lp ≫ ξg, see Fig. 2 (top). The
boundary charge operator at one end (determined by the
envelope function fm falling off from that end) of the
system is defined [15,18] by Q̂B ¼ PNs

m¼1 fmðρ̂m − N=NsÞ,
where ρ̂m ¼ P

σ a
†
mσamσ is the charge operator at site m

summed over all NB channels. The fluctuations ΔQ2
B ¼

hQ̂2
Bi − hQ̂Bi2 can straightforwardly be expressed via the

correlation function Cmm0 ¼ hρ̂mρ̂m0 i − hρ̂mihρ̂m0 i by
exploiting the exact sum rule

PNs
m0¼1

Cmm0 ¼ 0. We obtain

ΔQ2
B ¼ − 1

2

PNs
m;m0¼1

ðfm − fm0 Þ2Cmm0 . Employing that
Cmm0 decays exponentially for jm −m0j ≫ ξg, we find that
the fluctuations are finite in the thermodynamic limit and
the correlation function Cmm0 can be replaced by the bulk
correlation function Cbulk

mm0 ≡ a2Cbulkðx; x0Þ as we have
lp ≫ ξg. Expanding fm − fm0 up to first order in m −m0

FIG. 2. Pictorial representation of the system (bottom) and the
definition of the envelope of the charge probe fm (top). Here, lp
defines the length on which the probe smoothly loses contact to
the sample (region where envelope varies smoothly from 1 to 0).
We also define the lattice spacing a and the unit cell size Za.
Implicitly, we assume that the falloff of fm fits into the system
size L (the center of the falloff is irrelevant). The universal regime
is defined by lp ≫ ξg ¼ vF=Eg ≫ a.
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and averaging the correlation function over the unit cell
[denoted by C̄bulkðx; x0Þ ¼ C̄bulkðx − x0Þ], we find in the
universal limit lp ≫ ξg ≫ a the result (see the
Supplemental Material [26] for details)

lpΔQ2
B ¼ −

1

2

Z
dx x2C̄bulkðxÞ þOðξ2g=lpÞ; ð1Þ

where we defined l−1p ¼ R
dxf0ðxÞ2 with fðmaÞ≡ fm. Our

result requires only the condition that C̄bulkðxÞ decays
exponentially for distances above the scale ξg. This is
expected generically in the insulating regime due to the
nearsightedness principle [40,41]. Here, ξg should be
considered as an upper limit for the decay length of
C̄bulkðxÞ; in multichannel or interacting models, it is
generically expected that C̄bulkðxÞ consists of a linear
combination of many exponentially decaying terms with
different length scales ξσ ≲ ξg (see below the discussion of
higher-dimensional systems).
We note that our central result (1) is independent of the

scale lp (besides the condition lp ≫ ξg), offering a high
degree of flexibility to measure and calculate the univer-
sality of boundary charge fluctuations; e.g., in cold atom
systems, one can probe them either directly via the density
profile or the correlation function [42]. Alternatively, for
the special choice fm ¼ 1 −m=Ns (where lp ¼ L), we get
Q̂B ¼ −P̂=L with P̂ ¼ a

PNs
m¼1mðρ̂m − N=NsÞ denoting

the bulk polarization operator, the fluctuations of which are
also discussed within localization theories [43]. Our result
lpΔQ2

B ¼ ΔP2=L provides a “surface fluctuation theorem,”
connecting boundary and bulk fluctuations in a universal
way. This can be viewed as the fluctuation-based analog of
the celebrated surface charge theorem [17,18,44,45].
Single-channel case.—A theory as general as the one

outlined above can be put to the test in a plethora of
applications. We start with the most simple single-channel
case NB ¼ 1 and nearest-neighbor hoppings, where
numerically exact results in the clean or disordered case
(by diagonalization of the single-particle problem), as well
as in the presence of interactions, can be obtained with
relative ease (in the interacting case by use of density
matrix renormalization group approaches). We consider the
following model:

H ¼ −
XNs−1

m¼1

ðtm þ wmÞða†mþ1am þ H:c:Þ þ
XNs

m¼1

vmρm

þ U
XNs

m¼1

ðρm − 1=2Þðρmþ1 − 1=2Þ; ð2Þ

where tm ¼ tmþZ and vm ¼ vmþZ are periodically modu-
lated nearest-neighbor hoppings and on-site potentials,
respectively, wm describes bond disorder drawn from a
uniform distribution wm∈ ½−dm=2;dm=2Þ with dm ¼ dmþZ,
and U ≥ 0 is a nearest-neighbor repulsive interaction.
The phase diagram of this model in the SSH limit [21,22]

at half filling (choosing Z ¼ 2 and vm ¼ 0) and its
characterization in terms of the boundary charge fluctuations
were already discussed above; see Fig. 1. Varying the
interaction strength U as well as hopping disorder
d ¼ d1 ¼ 2d2, gap closings indicated by strongly enhanced
boundary charge fluctuations are found. In the ðr; dÞ plane at
finite disorder and U ¼ 0, we show that our characterization
in terms of the boundary charge fluctuations is perfectly
consistent with the number of edge states, thus demonstrat-
ing perfect agreement with the theoretical [46] and exper-
imental [23] findings. At finite U the transition to the
correlated Mott insulator is more involved and classification
schemes are rare. The Mott insulator is characterized by a
charge density wave instability due to umklapp processes
[47], generating a staggered on-site potential. This potential
breaks the chiral symmetry of the SSH model and leads to a
nontopological phase. The boundary charge fluctuations
provide a valuable tool to find also this transition line;
compare Fig. 1. From exact solutions, one point of this
transition line into the Mott insulator is known to be at r ¼ 1
(t1 ¼ t2), U=t1 ¼ 2, which is in perfect agreement with the
boundary charge fluctuation characterization.
Whereas the boundary charge fluctuations depend

strongly on the gap size, the boundary charge QB itself
is sensitive to the phase of the gap parameter in one-
dimensional, single-channel models [19]. This suggests the

FIG. 3. Polar color plot of lpΔQ2
B as a function of QB mod(1)

(polar component) and the gap Eg (radial component) for model
(2) with Z ¼ 2, a ¼ 1, N=Ns ¼ 1=2, t ¼ ðt1 þ t2Þ=2 ¼ 1, d ¼ 0,
and U ¼ 0 (upper) or U ¼ 0.5 (lower). The data points are
obtained by taking t1=2 ¼ t� Δ0=2 cosðϕÞ, v1=2 ¼ �Δ0 sinðϕÞ,
and varying the parameters Δ0 and ϕ in the intervals Δ0 ∈
½0; 0.375� and ϕ ∈ ½0; 2π�. For U ¼ 0 the analytic result
(Ns; lp → ∞) is used, while for U ¼ 0.5 we set Ns ¼ 1000,
and lp ¼ 400.
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polar plot of Fig. 3, where we show the fluctuations lpΔQ2
B

in dependence of the gap Eg (radial component) and the
boundary charge QB mod(1) (polar component) for the
model of Eq. (2) with Z ¼ 2 and d ¼ 0, both forU ¼ 0 and
finite U, choosing a variety of parameters to define the
staggered on-site potentials v1 ¼ −v2 and hoppings t1=2.
This corresponds to the noninteracting and interacting
Rice-Mele model [20,48]. The radially symmetric value
of lpΔQ2

B indicates that the fluctuations depend only on the
gap’s absolute value, but not on QB, and that they strongly
enhance at the center Eg → 0. We expect this feature to be
generic for one-dimensional, single-channel models in the
low-energy regime.
For the noninteracting and clean Rice-Mele model

Z ¼ 2, we find analytically the exact result (see the
Supplemental Material for details [26]) lpΔQ2

B ¼
aðt21 þ t22Þ=ð4Eg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
g=4þ 4t1t2

q
Þ, with the gap Eg ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ ðt1 − t2Þ2

p
and v ¼ v1 ¼ −v2. In the vicinity of

phase transitions Eg ≪ t ¼ ðt1 þ t2Þ=2, we obtain the
universal scaling

lpΔQ2
BðEgÞ !

Eg≪t vF
8Eg

¼ ξg
8
; ð3Þ

where vF ¼ 2ta denotes the Fermi velocity. For arbitrary
value of Z and generic modulations of the nearest-
neighbor hoppings and the on-site potentials, we confirm
this universal scaling for the chemical potential located in
any gap. We obtain this result by using the exact
eigenstates of a low-energy massive Dirac model in 1þ
1 dimensions, as proposed in Ref. [19] (see the
Supplemental Material [26] for details). Furthermore,
we find that ξg ¼ vF=Eg is the exponential decay length
of the correlation function C̄bulkðxÞ. For more exotic
models that cannot be described by a Dirac model in
the low-energy regime, we show in the Supplemental
Material [26] that also other scalings are, in principle,
possible. For the noninteracting and clean SSH model, we
numerically confirm the scaling lpΔQ2

B ¼ vF=ð8EgÞ in
Fig. 4(a) and find that it holds up to surprisingly large gaps
even beyond the applicability range of the low-energy
theory. This relation holds also in the presence of disorder,
at least for not too strong disorder d≲ 2–3, where a Born
approximation [49] can be used to define a renormalized
gap Eg ¼ 2jt̄1 − t̄2j, with t̄1 ¼ t1 − θðt1 − t2Þd21=ð12t1Þ
and t̄2 ¼ t2 − θðt2 − t1Þd22=ð12t2Þ denoting renormalized
hoppings (see the Supplemental Material for details [26]).
In Fig. 4(b) we show the scaling for different U and
d ¼ 0 and find that they collapse to the universal ∼1=Eg if
one allows for a U-dependent nonuniversal prefactor [26].
In this case, the gap is significantly increased by inter-
actions [19,20,50–52].
Two- and three-dimensional systems.—To analyze the

scaling in two and three dimensions D ¼ 2, 3 for non-
interacting and clean systems, we use translational invari-
ance in the transverse direction and consider NB ¼ ND⊥
transverse quasimomenta k⊥ as a channel index.
The fluctuations of QB can then be calculated as an
independent sum ΔQ2

B ¼ P
k⊥ ΔQ

2
Bðk⊥Þ, with k⊥ ¼ ky

for D ¼ 2 and k⊥ ¼ ðky; kzÞ for D ¼ 3. For each fixed
k⊥, we consider an effective one-dimensional, single-
channel system and get from Eq. (3) in the low-energy
regime lpΔQ2

Bðk⊥Þ ¼ vFðk⊥Þ=½8Egðk⊥Þ�, corresponding
via Eq. (1) to an independent term of C̄bulkðxÞ decaying
on length scale ξðk⊥Þ ¼ vFðk⊥Þ=Egðk⊥Þ ≤ ξg. The
momentum dependence of the effective gap Egðk⊥Þ can
be estimated for a typical massive Dirac-like spectrum in

Dþ 1 dimensions: Egðk⊥Þ ≈ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2Fk

2⊥ þ E2
g=4

q
, where Eg

denotes the spectral gap, and we have neglected the weak
momentum dependence of vFðk⊥Þ ≈ v̄F. In the thermo-

dynamic limit
P

k⊥ → ðN⊥a=ð2πÞÞD−1
R π=a
−π=a d

D−1k⊥, we
can estimate the scaling of the fluctuations. In two
dimensions, we obtain a logarithmic scaling N−1⊥ lpΔQ2

B∼
ðv̄F=WÞ lnðW=EgÞ ∼ a lnðξg=aÞ, where W defines a high-
energy cutoff scale for jv̄Fkyj. In contrast, for three
dimensions, we obtain a monotonic increase for the

(a)

(c)

(b)

FIG. 4. (a),(b) Scaling of lpΔQ2
B with the gap Eg for model (2)

on double-logarithmic scale for (a) U ¼ 0 and varying disorder
strength d (averaged over 20 disorder configurations) and
(b) d ¼ 0 and varying Coulomb interaction strength U (other
parameters as in Fig. 1). The dashed line indicates
vF=ð8EgÞ ¼ 1=ð4EgÞ. (b) U ¼ ð0.0; 0.4; 0.8; 1.2; 1.6; 2.0; 2.4Þ
are given by (blue, orange, green, red, purple, brown, pink)
symbols. The nonuniversal prefactors CðUÞ for the collapse are
given in the Supplemental Material [26]. In (a) and (b) we choose
Ns ¼ 1000 and lp ¼ 400. (c) Scaling of lpΔQ2

B=N
D−1⊥ from the

analytic result (Ns; lp → ∞) with the gap Eg ¼ 2jt1 − t2j for
various dimensions D for the SSH model (D ¼ 1) and for the
higher-dimensional models discussed in the main text (D ¼ 2, 3)
with t ¼ ðt1 þ t2Þ=2 ¼ ty ¼ tz ¼ 1. Insets: the same results on
different scales.
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fluctuations with decreasing gap but a finite value in the
zero-gap limit.
Systems illustrating this generic behavior can be real-

ized, e.g., in cold atom systems [53]. As an example, we
consider a SSH model in x direction (with alternating
hoppings t1;2), constant nearest-neighbor hoppings in trans-
verse direction (denoted by ty;z), and a homogeneous
magnetic field of size B in z direction (for D ¼ 2) or in
the y and z direction (for D ¼ 3). For the simplest case in
which the magnetic length is given by λB ¼ 2a, we obtain
in the Landau gauge an effective one-dimensional Rice-
Mele model with Egðk⊥Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðk⊥Þ2 þ ðt1 − t2Þ2

p
, where

vðk⊥Þ ¼ 2ty cosðkyaÞ in D ¼ 2 or vðk⊥Þ ¼ 2ty cosðkyaÞ þ
2tz cosðkzaÞ in D ¼ 3 (see the Supplemental Material [26]
for details). Using the exact result for the Rice-Mele model
to calculate lpΔQ2

Bðk⊥Þ, one can perform the integral over
k⊥ and finds for the fluctuations as a function of the gap
Eg ¼ 2jt1 − t2j the result shown in Fig. 4(c). The loga-
rithmic scaling in D ¼ 2 is perfectly preserved even for
large gaps, suggesting the boundary charge fluctuations to
be also useful as an indicator for phase transitions in two
dimensions. We emphasize that, for D ¼ 3, we observe
only a weak increase of the fluctuations with a finite value
at zero gap. Therefore, for three dimensions, the fluctua-
tions are only a weak indicator for the transition. Although
this limits the universally diverging behavior to one- and
two-dimensional systems, future studies should address
whether also the nondivergent enhancement carries valu-
able information of the type of transition passed. In
addition, it will be of interest to study how generic the
proposed decoupling in transverse modes will persist in
higher-dimensional interacting and disordered systems.
Conclusion.—We have established the boundary charge

and its fluctuations as a measurable tool to probe topo-
logical properties of insulators. Whereas the boundary
charge takes the role of a phase and jumps by e=2 at a
topological phase transition [19], the complementary fluc-
tuations are strongly enhanced in one and two dimensions
and reveal a universal scaling as a function of the gap size.
In contrast to the number of topological edge states, which
is controlled by nonfluctuating topological indices, we
found that the universal scaling properties of the fluctua-
tions do not depend on whether a topological index changes
at the transition, but rely exclusively on the characteristic
band structure of insulators with topological properties.
Importantly, this characterization scheme can be applied to
band, Anderson, and Mott insulators alike. An intriguing
avenue of future research concerns the question whether the
characterization proposed here is also useful in the context
of topological superconductors, for which simple models
do not fulfill charge conservation.
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