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Direct measurement of a bulk topological observable in topological phase of matter has been a long-
standing issue. Recently, detection of bulk topology through quench dynamics has attracted growing
interests. Here, we propose that topological characters of a quantum quadrupole insulator can be read out
by quench dynamics. Specifically, we introduce a quantity, a quadrupole moment weighted by the
eigenvalues of the chiral operator, which takes zero for the trivial phase and finite for the quadrupolar
topological phase. By utilizing an efficient numerical method to track the unitary time evolution, we
elucidate that the quantity we propose indeed serves as an indicator of topological character for both
noninteracting and interacting cases. The robustness against disorders is also demonstrated.
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Introduction.—Understanding topological aspects of
quantum matters has been one of the central issues in
modern condensed matter physics [1,2]. Discovery of
topological insulators (TIs) [3–7] is highlighted as one
of the most prominent steps that makes the roles of
topology manifest. Specifically, it was found that topo-
logical natures of Bloch electrons characterized by topo-
logical invariants result in boundary modes robust against
perturbations [8]. This relation between bulk topology and
boundary modes is called bulk-boundary correspondence
(BBC), and it has served as a central notion in studies on
topological materials [9,10].
BBC also ties topologically protected boundary modes

with quantized responses to external fields, which is
another characteristic of TIs. A representative example is
the quantum Hall effect where the number of edge modes
corresponds to the Hall conductance [8–10]. Another
example is the quantization of an electric dipole moment
attributed to the quantized Berry’s phase of Bloch electrons
in one dimension [11–20]. From the viewpoint of BBC, this
is attributed to the boundary states localized at the ends of
one-dimensional systems. Recently, this topological view-
point of an electric dipole is further extended [21,22] to
higher-rank multipole moments [23–28] (e.g., quadrupole
and octapole) in two or higher dimensions, that are
attributed to the boundary states localized at the corners.
Such a topological phase of matter hosting boundary modes
with codimension greater than one is nowadays established
as a higher-order topological phase, and large amount of
theoretical [29–47] and experimental [48–61] efforts have
been devoted to understanding and realizing this phase.
It had been a common belief that topological invariants

themselves are not observed from featureless gapped
ground states, but characteristic boundary modes enable
us to observe them. However, recently, an approach to
directly access bulk topological natures was proposed, that

is, dynamical aspects of topological phases [62–81]. Such
attempts are essential because they are beyond the afore-
mentioned common belief on topological phases. In the
literature, the semiclassical approach of wave-packet
dynamics has successfully illustrated the role of Berry
curvature in transport phenomena [62,63]. Another direc-
tion, on which we focus in this Letter, is considering
quench dynamics from completely localized initial states.
At single-particle level, i.e., without the Fermi sea of the
filled bands, the information of Bloch bands in an entire
Brillouin zone can be embedded by setting a spatially
localized initial state; this is attributed to the fact that the
localized states can be expressed as a linear combination of
all the states in the Fourier space. As such, topological
invariants can be extracted from the time-dependent quan-
tities. For instance, for chiral-symmetric one-dimensional
systems, the quantity called the mean chiral displacement
(MCD), which is the polarization weighted by the eigen-
value of the chiral operator, successfully extracts the
topological winding number of the system, and thus
distinguishes the topological states from the trivial states
[68–70,80]. Moreover, measurements of such quantities are
experimentally feasible in various setups, e.g., discrete
quantum walk in a photonic system based on the orbital
angular momentum of a light beam [68].
Considering the findings listed above, one is naturally

tempted to ask the following questions: (i) Can we apply
the measurement of topological invariants through dynam-
ics to higher-order topological (or quadrupolar) phases?
(ii) If so, can it be also applicable to interacting systems
and/or disordered ones? In this Letter, to address these
issues, we investigate two-particle dynamics of the inter-
acting Benalcazar-Bernevig-Hughes (BBH) model [23,24].
We heuristically find a quantity whose long time average
can characterize the topology. This quantity is a modified
bulk quadrupole moment, which is reminiscent of the MCD
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in one-dimensional systems. Therefore, this quantity is also
experimentally measurable. By using a numerically effi-
cient algorithm of tracing the unitary time evolution of the
two-particle wave function (one may increase the number
of particles in principle), we elucidate that the quantity
introduced here characterizes the topological nature of the
BBH model, for both noninteracting and interacting cases.
Furthermore, the characteristic behavior of this quantity is
robust against moderate strength of disorders, indicating
the feasibility of experimental measurements in realistic
setups that are not completely clean.
Hereafter, we set ℏ ¼ 1.
Model and method.—We consider the model proposed

in Refs. [23,24], incorporating an interaction and a dis-
order. The Hamiltonian reads H ¼ H0 þHint þHrand,
where H0 ¼

P
hi;ji ti;ja

†
i aj þ ðH:c:Þ, Hint ¼ V

P
hi;ji ninj,

and Hrand ¼
P

i wini. Here, a and a† denote, respectively,
the annihilation and creation operators of spinless fermions,
and i denotes the sites on a square lattice specified by a pair
of indices r and α ¼ 1, 2, 3, 4, where r ¼ ðrx; ryÞ is the
position of the unit cell, and α labels the sublattice (Fig. 1).
ni ≔ a†i ai is the density operator. The symbol h; i repre-
sents the nearest-neighbor pairs of sites. The transfer
integral ti;j is indicated in Fig. 1; there are two parameters,
ta and tb. We note that H0 preserves the chiral symmetry,

such that Γ̂H0Γ̂ ¼ −H0 with Γ̂ ¼ eiπ
P

r
ðnr;2þnr;4Þ. In addi-

tion to H0, we consider two terms Hint and Hrand. Here, V
denotes the strength of the intersite interaction and wi is the
strength of the disorder potential, chosen randomly
in ½−W=2;W=2�.
The topological properties of the hopping term H0 has

been well investigated in the literature. For jtaj ≠ jtbj, the
system is gapped at the half-filling. The half-filled ground
state is topologically trivial (nontrivial) when jtaj > jtbj
(jtaj < jtbj). The topological nature can be captured by

topological invariants such as the nested Wilson loop
[23,24], the quadrupole moment [25–27], the entangle-
ment-related quantities [36,47,82], and the Berry phase
[45]. Furthermore, nontrivial topology results in the emer-
gence of the corner states, which is characteristics of the
higher-order topological phases. The aim of this study is to
extract the topological nature without relying on the corner
states.
The quench dynamics of the system can be

dictated by the unitary time evolution of the many-body
wave function, jΨðtÞi ¼ e−iHtjΨð0Þi. To obtain jΨðtÞi
numerically, we approximate e−iHt as follows. First, we
discretize the time as tl ¼ lΔτ, with Δτ being small
time step (compared with the hopping parameters);
we set Δτ¼0.01 in the present work. Then, we have
e−iHtl ∼ ðe−iHΔτÞl. The remaining task is to approxi-
mate e−iHΔτ. To this end, we employ the fourth-
order Suzuki-Trotter decomposition [83,84], namely,
e−iΔτH¼Sð−ipΔτÞS½−ið1−2pÞΔτ�Sð−ipΔτÞ, where p ≔
ð2 − 21=3Þ−1 and SðxÞ¼exðH1=2Þ ���exðHq−1=2ÞexHqexðHq−1=2Þ ���
exðH1=2Þ. Note that, in defining SðxÞ, we divide the
Hamiltonian H into q pieces, H ¼ H1 þ � � � þHq, which
do not necessarily commute each other. Here, we set q ¼ 5,
and we show the explicit forms of H1–H5 in Supplemental
Material [85]. The Suzuki-Trotter decomposition of e−iHt

largely reduces computational costs. Hence, we can access
long time dynamics with relatively large system size in
short computational time, compared with other methods
such as exact diagonalization.
Mean chiral quadrupole moment.—The main proposal

of this Letter is the introduction of a quantity characterizing
the topological nature of the quadrupolar phase, which may
be termed the mean chiral quadrupole moment (MCQM):

CqðtÞ ¼ hΨðtÞjQjΨðtÞi; ð1Þ

where

Q ¼
X

r;α

rxryΓαnr;α: ð2Þ

Here, Γα is the eigenvalue of the chiral operator; it takes 1
for α ¼ 1, 3 and −1 for 2,4. Note that, to make the MCQM
well defined, we have to fix the labeling of the unit cells
and sublattices in the beginning, since this quantity depends
on the choice of the frame. Except for Γα, Q follows the
conventional definition of the quadrupole operator under
the open boundary condition [23–28]. This quantity can be
regarded as an extension of the MCD which dictates the
winding number of one-dimensional TIs in classes AIII and
BDI in the topological classification, having even number
of bands [68–70,80]. Note that, in actual experiments, all
we need to measure is the site-resolved particle density.
This guarantees accessibility of this quantity if spatial
resolution of experimental setup is sufficiently fine. It is

1 2

4 33

FIG. 1. Schematics of the BBHmodel. The unit cell is indicated
by a yellow shade, and green circles schematically represent the
initial positions of the two particles. Note that π flux threads each
square plaquette.
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also noteworthy that this quantity is sensitive to the choice
of the initial state. In the present study, we choose the initial
state such that two particles are localized at two diagonal
sites on the inter-unit-cell plaquette located at the middle of
the system, as schematically depicted as green circles in
Fig. 1. In Supplemental Material, we show the numerical
data for a different choice of initial state, namely, two
particles are localized at two diagonal sites on the intra-
unit-cell plaquette, where we see that the failure of the
distinction between topological and trivial cases.
How does the MCQM extract the topological nature of

the quadrupole insulators? To see this, we present an
intuitive understanding of the implication of the MCQM,
namely, the argument of the decoupled four-site cluster
limit. In the prior works [21,43,45,87–89], it was found that
this argument is essential for understanding the ground-
state properties of the insulating state, since the ground
state is adiabatically connected to this limit and topological
properties of gapped ground states are unchanged under the
change of model parameters unless the excitation gap is
closed. Regarding the dynamical properties, for which the
information of all the eigenstates matters, the notion of
adiabatic connection does not hold straightforwardly, but it
still gives a useful insight. In fact, such an argument works
in one-dimensional systems as well [85].
For the decoupled limits, the particles are confined in the

plaquette on which the particle is initially located, thus
unitary time evolution can exactly be tracked by solving the
four-site problem. Thus, in these limits, the exact form of

CqðtÞ is accessible. For the details of the calculations, see
Supplemental Material [85]. For the present choice of the
initial state, we find that, for the trivial limit, i.e., tb ¼ 0
[Fig. 2(a)], one has

C̄q ¼ 0; ð3Þ

where C̄q stands for the long time average of CqðtÞ.
Meanwhile, for the nontrivial limit i.e., ta ¼ 0 [Fig. 2(b)],
one has

C̄q ¼
1

2
: ð4Þ

Equation (4) indicates that nonvanishing value of C̄q under
the proper choice of the initial state reflects the presence of
the nontrivial topology in the bulk. It should be noted that
the difference between the trivial limit and the nontrivial
limit is whether the plaquettes with finite hoppings are
intra-unit-cell ones or an inter-unit-cell ones. In fact, even
away from the limiting cases, assigning larger hoppings on
inter-unit-cell plaquettes than the intra-unit-cell ones is
essential to obtain the finite value of C̄q, as we will show
later.
We briefly remark the role of Γα. In fact, the similar

factor is included in the MCD for one-dimensional systems
[69,70]. In that case, its role is to make the contributions
from the negative-energy bands and those from the pos-
itive-energy bands additive; otherwise they cancel each
other. This fact also implies that the MCD is adaptable to
chiral symmetric systems with an even number of topo-
logical bands. In fact, Γα in the MCQM is incorporated in
the same spirit, but in a rather heuristic manner.
Nevertheless, it is indeed essential so that the MCQM
serves as a topological marker, as clarified in the decoupled
cluster argument [85]. Moreover, the topological charac-
terization is valid even in the presence of the chiral-
symmetry-breaking term Hrand, as we will show later.
Numerical demonstration.—We now demonstrate the

validity of the MCQM for topological characterization.
In Figs. 3(a) and 3(b), we plot CqðtÞ to t ¼ 50 for
topological and trivial cases respectively, for the clean
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FIG. 2. Schematic figures of two decoupled limits. The panel
(a) corresponds to tb ¼ 0, i.e., the topologically trivial case, and
(b) corresponds to ta ¼ 0, i.e., the topologically nontrivial case.

FIG. 3. The MCQM for the clean system (i.e., W ¼ 0) with (a) ta ¼ −0.3, tb ¼ −1.0 and (b) ta ¼ −1.0, tb ¼ −0.3. (c) The time-
averaged MCQM, C̄q, as a function of jtaj=jtbj. The average is taken over t ∈ ½0; 50�, and the parameters in the actual simulations are set
such that maxfjtaj; jtbjg ¼ 1.
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systems (i.e., W ¼ 0). Here, the numerical computations
are carried out for 20 × 20-site (i.e., 10 × 10-unit cell)
systems under the open boundary condition. At the initial
state, two particles are localized at the sublattice 1 at the
unit cell (0,0) and the sublattice 3 at the unit cell ð−1;−1Þ.
We see in these figures that, for the topological case with
weak interaction (V ¼ 0, 0.3), CqðtÞ oscillates around 1=2
as expected, whereas it oscillates around 0 for the trivial
case. Therefore, the long time average of CqðtÞ indeed can
be used to extract the topological character of this model.
We also remark the boundary effects. In fact, the

particles are initially located near the center of the system,
and they reach the boundary at t ∼ 20. Although the
amplitude of the oscillation of the MCQM increases after
reaching the boundary, the center of the oscillation is still
unchanged, manifesting the robustness of C̄q against the
boundary effects. Also, the fact that the finite value of
MCQM in the topological case is obtained before reaching
the boundary indicates that the finite MCQM is not
attributed to the corner states, and thus this is indeed the
bulk property.
It can also be found in Fig. 3(a) that the role of the

interaction becomes manifest even for moderate strength of
the interaction (V ¼ 1.0). In the topological case, the
MCQM deviates from the noninteracting case, namely,
the MCQM exhibits gradual increase (decrease) to t≲ 30
(t≳ 30). This value of V is smaller than the band gap at the
half-filling. This result indicates the essential difference
between the dynamical properties and the ground-state
properties at the half-filling, because the latter is stable
against interactions as far as the excitation gap is not closed
[45]. We also note that, in the trivial case, the MCQM
seems to be rather insensitive to the interaction strength.
It should also be noted that the “topological transition" of

the dynamical properties is not as sharp as that for the
ground state. To show this, we plot C̄qðtÞ as a function of
jtaj=jtbj in Fig. 3(c). We see that the dependence on jtaj=jtbj
of C̄q is smooth, rather than a steep jump; this is another
indication of the difference between the dynamical proper-
ties and the ground-state properties, as the latter is
characterized by the jump of the quantized topological
number. Note that, at the critical point (ta ¼ tb), the
behavior of CqðtÞ is qualitatively different from that deep
inside the topological or trivial cases, namely, CqðtÞ does
not oscillate around a certain value; see Supplemental
Material [85]. This behavior will serve as a useful hallmark
indicating that the system is near the critical point.
Robustness against disorders.—We further study the

effects of disorder potentials, to test the robustness of
the MCQM. In Fig. 4, we plot CqðtÞ for the topological case
with weak (W ¼ 0.2) and moderate (W ¼ 1.0) disorders.
Here, the average is taken over 432 configurations of the
random disorder potential. We see that CqðtÞ remains to
oscillate around 1=2 for a weak disorder case. In particular,

for t≲ 20 where the particles do not reach the boundary,
the error bars due to the disorder average are very small.
Even for the moderate disorder case, the short-time
behavior (i.e., t≲ 5) is almost unaffected by the disorders.
However, after the long time (t≳ 20), the CqðtÞ starts to
decrease gradually and deviates from 1=2. These results
manifest the robustness of the MCQM against disorders,
which indicates that this is a measurable quantity in
experiments for moderately clean samples.
Summary.—We have proposed how to extract the topo-

logical character of the quadrupolar phase by the quench
dynamics. Specifically, we introduce the MCQM as a
marker of a topological character. Although the initial state
in the present setup is localized, the system is translation-
ally invariant without any boundaries. The numerical
results on the two-particle BBH model indicate that the
MCQM indeed captures the topological nature for weakly
interacting and moderately clean systems. It has also been
clarified that there are essential differences between the
ground-state topological properties at the half-filling and
the MCQM, with respect to the stability against the
interactions and the sharpness of the topological transition.
This is attributed to the fact that the former is protected by
the finite excitation gap, whereas the latter is affected by the
information of all the eigenvalues and eigenvectors.
It is worth pointing out that our method of tracking two-

particle dynamics is also applicable to bosonic systems. We
find that the results are qualitatively the same as those for
fermions [85]. This may indicate that each particle

FIG. 4. The MCQM for the disordered system with
(a) ta ¼ −0.3, tb ¼ −1.0, W ¼ 0.2 and (b) ta ¼ −0.3,
tb ¼ −1.0,W ¼ 1.0. The error bars are represented by the shades.
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contributes to the MCQM additively as far as the few-body
systems are concerned and it holds regardless of whether
the system is bosonic or fermionic. Considering this fact,
the present method can cover a wide range of experimental
setups, including fermionic and bosonic ultracold atoms
under the optical lattice, photonic crystals, and discrete
quantum walks. Meanwhile, insensitivity for the particle
statistics may not hold for the many-bony systems and
studying such cases is an interesting future problem [80].
We hope our proposal opens up a way to understanding
novel aspects of the quadrupolar phase.
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