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Plastic deformation in amorphous solids is known to be carried by stress-induced localized rearrange-
ments of a few tens of particles, accompanied by the conversion of elastic energy to heat. Despite their
central role in determining how glasses yield and break, the search for a simple and generally applicable
definition of the precursors of those plastic rearrangements—the so-called shear transformation zones
(STZs)—is still ongoing. Here we present a simple definition of STZs—based solely on the harmonic
approximation of a glass’s energy. We explain why and demonstrate directly that our proposed definition of
plasticity carriers in amorphous solids is more broadly applicable compared to anharmonic definitions put
forward previously. Finally, we offer an open-source library that analyzes low-lying STZs in computer
glasses and in laboratory materials such as dense colloidal suspensions for which the harmonic
approximation is accessible. Our results constitute a physically motivated methodological advancement
towards characterizing mechanical disorder in glasses, and understanding how they yield.
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Introduction.—It has been known since the seminal
works of Spaepen and Argon in the late 1970s [1,2] that
plastic flow in amorphous solids proceeds via stress-induced
localized rearrangements of small clusters of particles.
Those rearrangements, their collective dissipative dynamics
and spatiotemporal correlations give rise to many emergent
phenomena such as plastic strain localization [3–6], shear
banding [7–9], system spanning avalanches of plastic
activity [10–17], and macroscopic yielding [18–20].
A first-principles understanding of these emergent

phenomena calls for the identification and statistical
quantification of the microstructural entities that constitute
the precursors of stress-induced dissipative rearrangements
in amorphous solids. Those precursors and their micro-
mechanical nature were envisioned by Falk and Langer two
decades ago [21], and subsequently coined shear trans-
formation zones (STZs). Phenomenological theories [5,
21–24] and several variants of elastoplastic lattice models
[7,15,25,26] were since put forward, building on the
premise that a population of STZs is encoded in a glass’s
structure, and serves as the key vehicle for plastic defor-
mation and macroscopic yielding.
Substantial computational research efforts have been

dedicated to the search for structural indicators that serve
as faithful representatives of STZs; see Ref. [27] for an
extensive review of those efforts. In parallel, micro-
mechanical theories of elastoplastic instabilities, formu-
lated within the potential energy landscape picture [28],
have been put forward, both in the harmonic [11,29,30] and
anharmonic [31–33] regimes. In these formulations, STZs
are represented by destabilizing modes (putative displace-
ment fields about the mechanical equilibrium state) whose

associated energies vanish continuously upon approaching
the onset of elastoplastic instabilities under external defor-
mation [32]. Using harmonic modes to detect STZs is a
natural starting point, as they are simple and efficient to
calculate.
One clear limitation of the harmonic formulation of

elastoplastic instabilities is the tendency of soft, quasilocal-
ized vibrational modes—that destabilize under external
deformations—to hybridize with other low-frequency
modes, primarily phononic [32,34,35], but also quasilocal-
ized [33]. Consequently, the utility of harmonic analyses in
exposing quantitative information regarding plastic insta-
bilities is system-size dependent; in particular, only at strains
of order ≲L−4 away from plastic instabilities (in systems of
linear size L), does quantitative micromechanical informa-
tion regarding the imminent instability become available by
studying the lowest vibrational mode of a glass [32]. At
larger strains away from instabilities, hybridizations spoil
said information, as demonstrated in Fig. 1 below.
A potential solution to some of the obstacles posed by

hybridization issues seen in harmonic frameworks
was recently put forward, in the form of a nonlinear
micromechanical framework [32–34,47]. Within this
framework, the microstructural entities that constitute
the precursors of elastoplastic instabilities are (normal-
ized) displacement fields π3, coined plastic modes or
cubic modes, which are defined as solutions to the
algebraic equation

∂2U
∂x∂x · π3 ¼

∂2U
∂x∂x ∶ π3π3

∂3U
∂x∂x∂x ∶ · π3π3π3

∂3U
∂x∂x∂x ∶π3π3; ð1Þ
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where UðxÞ is the potential energy that depends on
coordinates x, and ∶; ∶· represent double and triple
contractions, respectively. Cubic modes π3 were shown
to feature nontrivial statistical [33] and micromechanical
[32] properties, and can be considered as one of the most
informative representatives of STZs, as discussed in more
detail in the Supplemental Material [36].
In parallel to the apparent utility (see, e.g.,

Refs. [33,37,48]) of the nonlinear micromechanical frame-
work within which cubic modes are defined, its general
applicability to computer glass models is limited: in several
well-studied models, higher-order (≥ 3rd) spatial derivatives
of the potential energy—necessary for the computation of
cubic modes, as evident by Eq. (1)—are either impossible to
evaluate, e.g., in hard sphere glasses, cumbersome to

evaluate, e.g., in the Stillinger-Weber model [49] that
features a three-body interaction term, or singular by
construction, e.g., in Hertzian spheres near the unjamming
point [50–52].
Here we introduce a simple, alternative definition of soft,

quasilocalized modes—referred to in what follows as
pseudoharmonic modes (PHMs)—and directly demonstrate
that they faithfully represent STZs. A key feature of PHMs is
that their definition relies solely on the availability of the
harmonic approximation of the potential (or free) energy—in
the form of the Hessian matrix H≡ ∂2U=∂x∂x—and not
on higher order derivatives, as some previous definitions of
STZs do [33,34,47,53,54]. As demonstrated below, the PHM
framework is broadly applicable, straightforward, and com-
putationally efficient. We further provide physical arguments

FIG. 1. Pseudoharmonic modes represent STZs in glasses, ranging from ultrastable [Tp ¼ 0.2, panels (a)–(d)] to poorly-annealed
[Tp ¼ 0.7, panels (e)–(h)]. (a) The squared frequencies of a destabilizing PHM π (solid red line), cubic mode π3 (solid purple line), and
vibrational mode ψ (solid black line) of an ultrastable glass of N ¼ 10 K particles in two dimensions, subjected to athermal quasistatic
shear (see details in the Supplemental Material [36]). The horizontal dashed line indicates the first shear wave frequency ωph ¼ 2πcs=L,
with L and csðTpÞ denoting the box length and (glass-history-dependent) shear-wave speed, respectively. Panels (b)–(d) show ψ (top
row), π and π3 (2nd row) at the strains indicated in panel (a), corresponding to strain differences away from the instability of Δγ ¼ 10−1,
10−2, and 10−5, from left to right. These data show that the firstly activated STZ under shear is present in the as-cast glass, in the form of
a PHM. Panels (e)–(h) are the same as (a)–(d), but measured in a poorly annealed glass of N ¼ 40 K particles, with
Δγ ¼ 8 × 10−4; 2 × 10−4, and 10−5, from left to right.
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that motivate our definition of PHMs, and show that in the
zero frequency limit, the frequencies associated with PHMs
converge to those associated with the softest nonphononic
vibrational modes. Finally, we offer a software library [55]
that calculates low-energy STZs via the presented frame-
work, for any given Hessian of a glass in mechanical
equilibrium.
Pseudoharmonic modes.—PHMs are putative displace-

ment fields π about a mechanical equilibrium state, for
which the cost function [33]

CðzÞ ¼ ðH∶ zzÞ2
P

hi;jiðzij · zijÞ2
; ð2Þ

assumes local minima, i.e., they solve

∂C
∂z

�
�
�
�
z¼π

¼ 0: ð3Þ

Here zij ≡ zj − zi, and the sum in Eq. (2) runs over all pairs
hi; ji of interacting particles [56]. It is apparent by
examining Eq. (2) that PHMs are accessible in any system
whose Hessian matrix H is available, which is a major
strength of our approach, demonstrated further below.
Why do PHMs π—for which the cost function CðzÞ

given by Eq. (2) assumes local minima—constitute faithful
descriptors of STZs? This point is demonstrated explicitly
in Fig. 1, but can be argued for as follows; when evaluated
at local minima π of the cost function CðzÞ, CðπÞ’s
numerator is expected to be small, and its denominator
—large. The numerator of CðzÞ describes the square of
(twice) the energy associated with z (assuming harmon-
icity), therefore π will generally represent a low-frequency
mode. CðzÞ’s denominator

P
hi;jiðzij · zijÞ2 can be argued to

(i) scale as k4 for waves of wave number k—and
therefore strongly suppress long wavelength phononic
modes, and (ii) be inversely proportional to z’s participa-
tion ratio eðzÞ≡ ½NP

iðzi · ziÞ2�−1 (demonstrated in the
Supplemental Material [36])—and is therefore larger
(smaller) for more (less) localized modes. These features
of CðzÞ explain why PHMs π that represent its local minima
are generally both soft and quasilocalized modes, as
required in order to constitute STZs.
Solutions π to Eq. (3) can be readily obtained in two

ways described next. (1) Starting with an initial guess πð0Þ,
repeatedly apply the mapping

F ðπÞ ¼ H−1 · ζðπÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðπÞ ·H−2 · ζðπÞ

p ; ð4Þ

where

ζkðπÞ≡
X

hi;ji
ðδjk − δikÞðπij · πijÞπij; ð5Þ

until F ðπÞ ≃ π, which can be shown to be equivalent to
Eq. (3). (2) Starting with an initial guess πð0Þ, minimize the
cost function CðzÞ given by Eq. (2) to obtain a PHM π. The
iterative scheme (1) has the advantage of being parameter
free, and only requires solving a set of linear equations (at
each iteration). The minimization scheme (2) is computa-
tionally more efficient, however it inherits the disadvantage
of nonlinear minimization algorithms, which require the
choice of problem-dependent parameters.
An example of a PHM calculated in a two-dimensional

computer glass subjected to athermal, quasistatic (AQS)
shear deformation is shown in Fig. 1. We show that the
harmonic and nonlinear descriptions of the elastoplastic
instability agree as the shear strain γ approaches the
instability strain γc. At strains ≳L−4 away from γc, the
harmonic description breaks down due to phonon hybrid-
izations [32], while the nonlinear description persists to
reflect the geometry and locus of the imminent instability,
up to large Δγ ¼ γc − γ ≃ 7% (in the example of Fig. 1).
Moreover, PHMs closely resemble cubic modes along the
whole elastic branch. Cubic modes have a higher stiffness
because the third-order coefficient of the expansion of the
potential energy is very sensitive to the structure of the
mode, as discussed in detail in Ref. [33].
General applicability of PHMs.—In Fig. 2 we present

PHMs calculated for various computer glass models [36]
for which extracting soft, quasilocalized modes using the
anharmonic micromechanical framework presented in

FIG. 2. Pseudoharmonic modes in various computer glasses:
(a) a hard-disk glass, (b) a glass of Hertzian soft spheres, (c) a
Stillinger-Weber tetrahedral glass with three-body interactions
[49], and (d) a CuZr bulk metallic glass [57].
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Refs. [33,34,47] is either very difficult or impossible. In
particular, we show a PHM found in as-cast (not deformed)
glasses of (a) hard spheres, (b) Hertzian soft spheres, (c) the
Stillinger-Weber model [49], and finally (d) a Copper-
Zirconium bulk metallic glass (BMG) model [57]. Details
about the models and calculations are presented in the
Supplemental Material [36].
Convergence to nonphononic harmonic modes.—A

stringent benchmark for various definitions of soft, quasi-
localized modes is the degree of agreement between their
structural and energetic properties, to those associated with
nonphononic harmonic (vibrational) modes representing
the same soft spots in the material. Detailed discussions
regarding this benchmarking, and its implications, can be
found in Ref. [33].
Here we build an ensemble of PHMs, one for each glassy

sample [36]; we do this by setting πð0Þ to be the softest
harmonicmode ψ in a given glass, which has an energy ω2

ψ

(setting units such that all masses are unity). We then map
πð0Þ ¼ ψ to a PHM π with energyω2

π using either of the two
methods described above (the result is independent of this
choice). In Fig. 3(a) we compare the obtained solutions π
with low-frequency harmonic modes by scatterplotting
each mode’s localization—as captured by the scaled
participation ratio Ne—versus its associated frequency.
We see that PHMs remain localized irrespectively of
their frequency, whereas harmonic modes show a strong

hybridization with plane waves above the lowest phonon-
frequency ωph ¼ 2πcs=L [35,58], where cs denotes the
shear wave speed. Finally, we show in Figs. 3(b)–3(c) the
average relative energy differences ðω2

π − ω2
ψÞ=ω2

ψ and
the average overlaps 1 − jπ · ψj, as a function of the harmonic
modes’ frequenciesωψ , and binned over those same frequen-
cies. We find that as ωψ → 0 solutions π converge both
energetically and structurally to harmonic modes ψ. The
implications of this convergence are discussed below.
To further demonstrate the veracity of PHMs as true

plastic defects mediating STZs, we compare the map of the
residual strength—local yield stress—measured with the
frozen matrix method [59,60] with the location of PHMs at
various plastic events, see Fig. 4. Here, we map at each
shear transformation the triggering critical mode πð0Þ ¼ ψc
to a PHM π computed from the as-cast (γ ¼ 0) cost
function. Surprisingly, we find that all detected plastic
events can be traced-back to PHMs in the as-cast (zero
strain) glass. This result firmly establishes that regions with
low residual strength emanate from the presence of soft
quasilocalized excitations.
Summary and outlook.—Revealing the micromechanical

entities that carry plastic flow in amorphous solids—the
shear transformation zones—are key to understanding
these materials’ failure mechanisms. To this aim, various
methods designed to identify a population of STZs in
glassy solids via a harmonic analysis of their potential
energy have been put forward [61–66]. These methods
feature appreciable degrees of success in predicting plastic
flow [27], including in experimental setups [67]. However,

FIG. 3. Pseudoharmonic modes (versus harmonic vibrational
modes: (a) Scaled participation ratio Ne as a function of
frequency ω, calculated in an ensemble of computer glasses in
three dimensions [36]. The convergence of the energy [panel (b)]
and structure [panel (c)] of PHMs to those of their ancestral
harmonic modes. In every panel the dashed line indicates the
lowest phonon frequency.

FIG. 4. Residual plastic strength map of a well-annealed
Lennard-Jones binary glass at zero strain γ ¼ 0 (details about
the model can be found in Ref. [59]). Black circles indicate the
loci of the 10 first plastic instabilities. PHMs are extracted from
the as-cast configurations by mapping the critical mode at each
plastic event.
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they typically do not provide a micromechanical charac-
terization of a single, isolated STZ, in terms of its energy,
orientation, and coupling to external loads, and are further
hindered by hybridizations that typically occur between
different vibrational modes.
In this Letter we have introduced a simple and generally-

applicable micromechanical definition of STZs. These
objects are referred to here as pseudoharmonic modes
because they depend solely on the harmonic approximation
of the potential (or free) energy (in the form of its Hessian
matrix). We show that PHMs can be calculated in a variety
of model systems in which other soft, nonlinear excitations
are either inaccessible or cumbersome to obtain. We
demonstrate that PHMs are good indicators of elastoplastic
instabilities in the athermal, quasistatic limit, and show that
their associated energies in as-cast glassy samples converge
to nonphononic, harmonic modes’ energies, in the low-
energy limit. Finally, an open-source library is offered [55],
that calculates PHMs given a glass’s Hessian matrix.
The convergence of the spatial structure and energies of

PHMs and of low-frequency, nonphononic harmonic
modes, suggests that the formers’ frequency distribution
follows the same asymptotic ∼ω4 law, which is universally
featured by the nonphononic density of states of structural
glasses quenched from a melt [38,68,69].
The ability to extract the precise displacement field

associated with a single STZ, including very far (in strain)
from its eventual instability, and exclusively using the
harmonic approximation of the energy, opens up a wide
range of new analyses in computer glasses and some
experimental systems. For example, our method could
be used to systematically quantify the properties of
STZs in a wide variety of glass models (available, e.g.,
in LAMMPS [70]), as a function of composition or material
preparation [71]. In addition, our method could be used to
quantify the orientation and density of STZs, and study
their evolution as a function of applied shear strain [72],
which would place strong constraints on continuummodels
for plasticity in amorphous solids [5,21–24].
We note finally that while some interesting insights into

glass physics have been obtained [33,37,48] by investigat-
ing soft anharmonic excitations using existing frameworks
[33,34], an algorithm to detect all such excitations in a
given glassy sample is still under development [73]. The
ideas presented here might also find utility in saddle-point
search algorithms such as the activation-relaxation tech-
nique [74], in searches for two-level system in computer
glasses [75], and in investigations of the micromechanics of
defects in crystalline solids [65].
A readily usable PYTHON package to detect soft spots in

structural glasses is available in Ref. [55]. It includes
documentation and a minimal example.
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