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Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been
restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of
space can have significant effects on quantum statistics for particles moving on it. Here, we have
undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move
on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum
impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear
bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the
anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the
sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules
corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of
exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure
the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra
of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the
presence of a Dirac monopole field.
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The study of quasiparticles with fractional statistics,
called anyons, has been an active field of research in the
past decades. This field has gained a lot of attention, due to
the possible usage of these quasiparticles in quantum
computation [1–4]. In contrast to bosons and fermions,
anyons acquire a phase eiπα under the exchange of two
particles, where the statistics parameter α is not necessarily
an integer. The integer cases α ¼ 0 and α ¼ 1 represent
bosons and fermions, respectively. For noninteger α, the
transformation law Ψ → eiπαΨ under the exchange of two
particles can be realized only by allowing the wave function
Ψ to be multivalued. The idea is that the multiple values
keep book of the different possible ways the particles could
“braid” around each other. Because of the triviality of the
braid group in 3þ 1 dimensions, anyons are a purely low-
dimensional phenomenon.
Although anyons are predicted to be realized in the

fractional quantum Hall effect (FQHE) [5–12], they have
not yet been unambiguously detected in experiment.
Indeed, there has been a recent upsurge in interest con-
cerning the realization of anyons in experimentally feasible
systems [13–18]. For instance, it has been recently shown
in Refs. [19,20] how these quasiparticles emerge from
impurities in standard condensed matter systems.
Nevertheless, all these works focus on the particles moving
on the two-dimensional plane, i.e., on R2. Since the theory
of anyons and their statistical behavior are strongly
dependent on the geometry and topology of the underlying
space, investigations on curved spaces reveal novel features

of quantum statistics [21–28]. In particular, theoretical
discussions for systems having various geometries and
topologies have widened our understanding of the
FQHE [6,29].
In the present Letter, we explore the possibility of

emerging fractional statistics for particles restricted to
move on the sphere, S2, instead of on the plane. We show
that such quasiparticles naturally arise from a system of
molecular impurities exchanging angular momentum with
a many-particle bath. In the regime of low energies, we
identify the spectrum of this system with that of anyons.
This allows us not only to realize anyons on the sphere, but
also to open up various numerical approaches to investigate
the spectrum of N anyons on the sphere. To illustrate this,
we present the spectrum of two anyons on the sphere in the
presence of a Dirac monopole field, extending the recent
result of Refs. [25,28]. Furthermore, the anyonic behavior
of molecular impurities suggests that a novel type of
exclusion principle holds, which concerns the alignment
of the molecules instead of the exchange of their actual
position.
We start by considering a system of N free anyons on the

two-sphere. The Hamiltonian is given by the sum of the
Laplacian of the jth particle on the sphere: H0 ¼
−
P

N
j¼1∇2

j , which acts on a multivalued wave function
Ψ. By performing a singular gauge transformation,
Ψ → eiβΨ, one can get rid of the multivaluedness
[30–34], and the free anyon Hamiltonian on the sphere
H0 becomes equivalent to
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Hanyon ¼ −
XN
j¼1

ð∇j − iAjÞ2; ð1Þ

which now acts on single-valued bosonic (fermionic)
wave functions. Here, anyons are depicted as bosons
(fermions) interacting with the magnetic gauge field A,
which explains that the calculation of the anyonic spectra is
very hard [35]. Note that A ¼ ∇β is an almost pure
gauge field, up to the singularities of β, where the particles
meet, and it can be found as the variational solution of the
Chern-Simons (CS) Lagrangian LS2 ¼ P

j ðA · _qj þ A0Þ−
ð4παÞ−1 RS2 dΩA ∧ dA, where qj is the position of the
nonrelativistic point particle coupled to the CS field, A0 the
time component of the gauge field, and ∧ the wedge
product. For anyons on the plane, one can always find a
single magnetic potential A as a solution. However, due to
the nontrivial homology of S2, the CS Lagrangian on the
sphere can be solved only in two different stereographic
coordinate charts: north and south patches, AN and AS,
respectively. As they should be a single object in the
overlap patch, we require them to be gauge equivalent. This
equivalence is given by the Dirac quantization condition
(DQC) ðN − 1Þα ∈ Z [32,33].
In what follows, in order to simplify our expressions, we

represent the stereographic coordinates ðx; yÞ as a complex
number: z ¼ xþ iy. In these coordinates, we define
the gauge transformation F ¼ eiβ, with βðz1;…;zNÞ¼
−iα

P
j<k log½ðzj−zkÞ=ðjzj−zkjÞ�. The connections (gauge

fields) are Az̄j ¼ iDz̄jβ¼−½αð1þjzjj2Þ=2�
P

k≠j ðz̄j− z̄kÞ−1
and Azj ¼ iDzjβ¼½αð1þjzjj2Þ=2�

P
k≠j ðzj−zkÞ−1, where

we encode the contribution from the metric on S2

in the differential operatorsDz̄j ¼ ð1þ jzjj2Þ∂ z̄j and Dzj ¼
ð1þ jzjj2Þ∂zj [36]. In the language of connections, F
represents the holonomy of A, and it is discontinuous
along the lines which connect the particles with the north
(south) pole, usually called the Dirac lines. Without loss of
generality, we consider the north pole, which corresponds
to the choice of zj ¼ cotðθj=2Þ expðiφjÞ, with spherical
coordinates θj and φj. These lines represent the magnetic
potential in the singular gauge, by assigning the particle an
additional phase factor whenever it crosses them. The DQC
makes sure that the Dirac lines are invisible, in the sense
that one cannot distinguish between the theory where the
lines run to the north pole and theories where they run to
any other point. This means that our system is rotational
invariant, up to gauge equivalences.
The anyon Hamiltonian in our stereographic coordinate

system is written as

Hanyon ¼ −
XN
j¼1

ðDzj − z̄j − AzjÞðDz̄j − Az̄jÞ: ð2Þ

Direct calculations to investigate the spectra of Hanyon turn
out to be problematic, when the spectrum is calculated from

the bosonic end. This is due to that the matrix elements of
AzjAz̄j for certain bosonic states are singular, which is
similar to the case of anyons on the plane [20]. We can
overcome this difficulty with the similarity transformation

H0
anyon ¼ eα

P
j<k

log jzj−zkjHanyone
−α
P

j<k
log jzj−zkj. The ad-

vantage is that one of the two magnetic potentials vanishes
in this pseudogauge and the Hamiltonian simplifies to

H0
anyon ¼ −

XN
j¼1

ðDzj − z̄j − A0
zjÞDz̄j ; ð3Þ

where the nonzero magnetic potential is A0
zj ¼ 2Azj . Note

that H0
anyon is self-adjoint in a weighted L2 space. As we

discuss below, while the first form of the anyon Hamiltonian
(2) allows us to realize anyons in natural quantum impurity
setups, the Hamiltonian (3) provides powerful numerical
techniques to calculate the spectra of anyons on the sphere
within the simplified impurity models.
We will now consider a general impurity problem of N

bosonic or fermionic impurities on S2 interacting with
some Fock space F . Within the Bogoliubov-Fröhlich
theory [37–39], the impurity Hamiltonian is

Himp¼−
XN
j¼1

ðDzj − z̄jÞDz̄j þ
X
v

ωvb
†
vbv

þ
X
v

λvðz1;…;zNÞðe−iβvðz1;…;zNÞb†vþeiβvðz1;…;zNÞbvÞ;

ð4Þ
where b†v and bv are the bosonic creation and annihilation
operators, respectively, in F , ωv is the energy of the mode
v, and λvðz1;…; zNÞ and βvðz1;…; zNÞ describe the inter-
action of the impurities with the Fock space, depending on
their coordinates z1;…; zN . In the limit of ωv → ∞ (the
adiabatic limit), one can justify that the lowest spectrum of
Himp is described by the Born-Oppenheimer (BO) approxi-
mation; see Ref. [20] for an analysis of this assumption in
the planar case. The projection of the Hamiltonian to the
smaller Hilbert space manifests itself as a minimal coupling
of the otherwise free particles with effective magnetic
potentials Az1 ;…; AzN and a scalar potential Φ.
Following Ref [20], we first apply the transformation

Sðz1;…; zNÞ ¼ e−i
P

v
βvb

†
vbv to Eq. (4) and then project

the transformed Hamiltonian onto the coherent state

jϕðz1;…; zNÞi ¼ e
P

v
ðλv=ωvÞðb†v−bvÞj0i. The emerging mag-

netic potential in complex coordinates is then given by

Aimp
zj ¼ i

X
v

�
λv
ωv

�
2

Dzjβv: ð5Þ

Let us consider the specific choice βvðz1;…;zNÞ¼
−ipv

P
j<k log½ðzj−zkÞ=ðjzj−zkjÞ�, which results in
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Aimp
zj ¼½αð1þjzjj2Þ=2�

P
k≠j ðzj−zkÞ−1 with αðz1;…;zNÞ¼P

vpvðλv=ωvÞ2. We thus see thatAimp
z̄j is the sought CS gauge

field and obeys the DQC if αðz1;…; zNÞ is a constant and
satisfies ðN − 1Þα ∈ Z. We emphasize, however, that, for the
values of α which do not satisfy the DQC, the impurity
Hamiltonian (4) is still well defined. The only difference for
these values is that the theory is no longer fully rotational
invariant, but, instead, it is invariant under rotation around the
z axis. In other words, the Dirac lines, which emerge together
with the statistical gauge field, are not invisible [40], and they
puncture the sphere. These features have drastic effects on the
physical realization of anyons on the sphere in terms of
quantum impurities, in comparison to emergent anyons on the
plane studied in Ref. [20].
In general, the impurity Hamiltonian (4) corresponds

to interacting anyons due the presence of the scalar potential
Φ. An impurity Hamiltonian whose lowest-energy spectrum
is governed by the anyon Hamiltonian in the pseudo-
gauge (3), however, describes free anyons, as the scalar
potential vanishes with Az̄ ¼ 0. Although such an impurity
Hamiltonian is not Hermitian and may be harder to
realize experimentally, considered as a toy model its non-
Hermiticity is harmless for our purposes, and it opens up
simple numerical approaches to calculate the spectra of
anyons on the sphere.
Our numerical tools work for an arbitrary number of

particles. Nevertheless, we will here study only the two-
anyon case, since the computational effort strongly scales
with the number of particles. Furthermore, we investigate
impurities interacting with a Dirac monopole field B.
This allows us to investigate the spectrum for all values
of α, as the DQC in the presence of a Dirac monopole field
is 2B − ðN − 1Þα ∈ Z [25,28]. Accordingly, we consider
the following simple model:

H0
imp ¼ HB þ ω

�
b†bþ α

p

�

þ
ffiffiffiffi
α

p

r
ωðe−p log ðz1−z2Þb† þ ep log ðz1−z2ÞbÞ; ð6Þ

where HB ¼ H0 þ
P

2
j¼1 A

B
zjDz̄j describes the bosonic or

fermionic particles interacting with the Dirac monopole
field B generated by the gauge field AB

zj ¼ 2Bz̄j, p is an
integer, and we subtracted the vacuum energy −ωα=p of
the pure Fock space part of the Hamiltonian.
One could calculate the lowest spectrum of H0

imp by
diagonalizing the matrix hSðAÞ; njH0

impjS0ðA0Þ; n0i, where
jSðAÞi ¼ jYl1;m1

⊗SðAÞ Yl2;m2
i are the impurity basis with

Yl;m being the spherical harmonics, ⊗SðAÞ the (anti)sym-
metric tensor product, and jni the n-particle state in the
Fock space. Instead of this direct diagonalization technique,
we first diagonalize the Fock space part of the Hamiltonian
with the displacement operator. The anyon Hamiltonian (3)
in the presence of a Dirac monopole field, which emerges
in the limit of ω → ∞, is, then, given by

H0B
anyon ¼ HB þ α

p
ðep log ðz1−z2ÞH0e−p log ðz1−z2Þ −H0Þ; ð7Þ

see Supplemental Material [41] for the derivation. We
underline that a similar form of the Hamiltonian (7) for
anyons on the plane has been previously introduced in
Ref. [20], where the second term of the right-hand side was
written in terms of composite bosons or fermions for an
even integer p. Extending this approach, we use here Bose-
Fermi mixtures which enable us to set p ¼ 1. Within such a
simple choice, Eq. (7) can be written as the following
matrix equation:

EB
anyon ¼ Ebos þ 2BWS þ αðZ−1EferZ − EbosÞ; ð8Þ

where the elements of the matrices are given by Ebos ¼
hSjH0jS0i, Efer ¼ hAjH0jA0i, WS ¼ hSjP2

j¼1 z̄jDz̄j jS0i,
and Z−1 ¼ hSjz1 − z2jAi. As the latter two terms are
straightforward to calculate numerically, and the matrix
Z can be obtained by taking the (pseudo)inverse of Z−1,
Eq. (8) opens up a powerful route to calculate the anyonic
spectrum. The spectrum from the fermionic end in terms
of the relative statistics parameter can be calculated simply
with the replacement of the basis jSðAÞi → jAðSÞi in
Eq. (8).
As an example, we compute the eigenvalues for α

ranging from 0 to 1. For an easier comparison with the
result existing in Ref. [28], we calculate the spectrum from
the fermionic end. The result presented in Fig. 1 is
consistent with the one shown in Ref. [28], where the
spectrumwas calculated only for the subset of energy levels
with unit total angular momentum.
The general form of the impurity Hamiltonian (4) allow

us also to physically realize anyons on the sphere in terms
of quantum impurities. The kinetic energy of the particles

FIG. 1. Numerical computations of the energy of two anyons on
the sphere in the presence of a Dirac monopole in terms of the
relative statistics parameter; i.e., α ¼ 0 corresponds to fermions
and α ¼ 1 to bosons. We set 2B ¼ α and consider spherical
harmonics with the angular momentum up to lmax ¼ 8 for the
numerics. Compare Fig. 1 in Ref. [28].
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on the sphere, which is given by the Laplacian
−ðDzj − z̄jÞDz̄j , can be realized as the angular momentum
operator L2

j. The latter can be considered as the
Hamiltonian of linear molecules, which enables us to
map rotation of molecules to motion of point particles
on the sphere. Consequently, instead of pointlike impu-
rities, which have been considered for the planar case in
Ref. [20], we consider here linear molecules and explore
the angular momentum exchange with the bath. Such a
realization exposes a novel correlation between molecular
impurities. Specifically, the exchange of the particles on the
sphere corresponds to a change in the alignment of the
molecules but not the exchange of the molecules them-
selves; see Fig. 2 (top). Therefore, the emerging statistical
interaction manifests itself in the alignment of molecules.
To illustrate this in a transparent way, we consider

the simple impurity Hamiltonian (6) in the absence
of the Dirac monopole. We investigate the alignment
hðcos θ1 − cos θ2Þ2i as a function of the statistics parameter
for two molecules. In Fig. 2 (bottom), we present the
alignment for the ground state, which is obtained from

Eq. (8) for the case of B ¼ 0. We note that the Hamiltonian
is still well defined for the values of α which do not satisfy
the DQC as we discussed before. Thus, the alignment of the
molecules could be used as an experimental measure of the
statistics parameter. Such a measurement can be performed,
for instance, within the technique of laser-induced molecu-
lar alignment [42,43]. Further discussion of the alignment
of molecules as a consequence of the statistical interaction
will be the subject of future work.
A physical realization of the interaction between the

molecules and a bath is also natural in the physics of
impurities. Indeed, it was shown that the molecular
impurities rotating in superfluid helium can be described
within an impurity problem [44–46]. The resulting quasi-
particle, which is called the angulon, represents a quantum
impurity exchanging orbital angular momentum with a bath
of quantum oscillators and serves as a reliable model for the
rotation of molecules in superfluids [47]. Therefore, we
consider the following angulon Hamiltonian [48,49]:

Hangulon ¼
X2
j¼1

L2
j þ Vðq1; q2Þ þ

X
k;l;m

ωk;l;mb
†
k;l;mbk;l;m

þ
X
k;l;m

λk;l;mðq1; q2Þðe−iβk;l;mðq1;q2Þb†k;l;m þ H:c:Þ;

ð9Þ

where b̂†k;l;m and b̂k;l;m are the bosonic creation and
annihilation operators, respectively, written in the spherical
basis [44], qi ¼ ðθi;φiÞ are the angular coordinates
representing the molecular rotation of the ith mole-
cule, V is a confining potential, and H.c. stands for
Hermitian conjugate. Note that the coupling terms might
depend on the intermolecular distance, as well. For heavy
molecules, the BO approximation can be justified with a
gapped dispersion ωk;l;m. Furthermore, following our pre-
vious reasoning and Eq. (5), if the impurity-bath coupling
satisfies the relation i

P
k;l;m ðλk;l;m=ωk;l;mÞ2Dzjβk;l;m ¼ Azj ,

the lowest-energy spectrum of the two linear molecules
immersed in the bath coincides with the spectrum of two
anyons on the sphere. In principle, such an interaction is
feasible with the state-of-art techniques in the physics of
superfluid helium as well as ultracold molecules.
In order to present a simple and intuitive realization, we first

neglect the intermolecular distance. This enables us to define
the interaction term simply as λk;l;mðq1; q2Þe−iβk;l;mðq1;q2Þ ¼
uk;l

P
2
j¼1 Yl;mðqjÞwith the impurity-bath coupling uk;l. For a

physical configuration, we consider molecular impurities in
superfluid helium nanodroplets. The corresponding coupling
captures the details of the molecule-helium interaction. For the
form of the coupling and the relevant parameters, we refer the
reader to Supplemental Material [41] and Refs. [50,51], where
the model has been used in order to describe angulon
instabilities and oscillations observed in the experiment.
Furthermore, the dispersion relation of superfluid helium

FIG. 2. Top: realization of anyons on the sphere in terms of
linear molecules immersed in a quantum many-particle environ-
ment. A change in the alignment of the molecules (dumbbells),
which is depicted by the white arrows, corresponds to the
exchange of the particles on the sphere (dots), shown by the
curvy black arrows. Bottom: the alignment hðcos θ1 − cos θ2Þ2i
as a function of the absolute statistics parameter for the ground
state. The curve follows the bosonic state jY0;0 ⊗S Y0;0i at α ¼ 0
to the fermionic state jY1;0 ⊗A Y0;0i at α ¼ 1. We consider
spherical harmonics with the angular momentum up to lmax ¼
8 for the numerics.
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allows us to achieve a gapped dispersion at the roton
minimum ωr [46]. Following the experimental realization
proposed in Ref. [20] for anyons on the plane, we also couple
the impurities to an additional constant magnetic field and
rotate the whole system at the cyclotron frequency Ω, which
breaks time reversal symmetry so that anyons can emerge on
the lowest-energy spectrum.
A priori, the emerging statistics parameter α ¼ αðθÞ

depends on the relative angle θ between the points q1 and
q2. However, with a careful choice of the model para-
meters, α becomes approximately constant with the con-
dition Ωlmax=ωr ≫ 1; see Supplemental Material [41]. The
condition imposes that the cyclotron frequency should be at
the order of the roton minimum. This implies that molecu-
lar impurities should be subjected to a strong magnetic field
at the order of Mωr with M being the mass of the
molecules. The θ dependence of α is demonstrated in
Fig. 3. In general, the statistics parameter does not satisfy
the DQC. Therefore, the molecular impurities correspond
to anyons interacting with the magnetic potential depicted
by the Dirac lines, with broken rotational symmetry. We
also note that, with the additional confining potential V, the
particles are confined to one of the half spheres so that the
statistics parameter becomes accessible to the experiment.
Thus, we see that a system of two linear molecules

exchanging angular momentum with a many-particle bath
can give rise to a system of quasiparticles with anyonic
statistics and can be realized by considering molecular
impurities in superfluid helium droplets. It would be
interesting to continue this approach and investigate
whether one can generalize the results above, e.g., to
non-Abelian Chern-Simons particles with the help of a
higher-order Born-Oppenheimer approximation.
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