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Conventional photonic lattices, such as metamaterials and photonic crystals, exhibit various interesting
physical properties that are attributed to periodic modulations in lattice parameters. In this study, we
introduce novel types of photonic lattices, namely Fourier-component-engineered metasurfaces, that do not
possess the first Fourier harmonic component in the lattice parameters. We demonstrate that these
metasurfaces support the continuous high-Q bound states near second stop bands. The concept of
engineering Fourier harmonic components in periodic modulations provides a new method to manipulate
electromagnetic waves in artificial periodic structures.

DOI: 10.1103/PhysRevLett.126.013601

Subwavelength photonic lattices with thin-film geo-
metries, such as metasurfaces [1–3] and photonic crystal
slabs [4,5], have attracted significant attention in recent
years owing to their substantial ability to manipulate
electromagnetic waves. Unlike the usual thin homogeneous
dielectric layers governed by Fresnel equations and Snell’s
law [6], photonic lattices can capture incident light by
resonance through lateral Bloch modes and reemit it with
predesigned electromagnetic responses [7]. By appropri-
ately designing individual constituents in lattices, several
interesting physical effects and useful applications, which
cannot be achieved with conventional dielectric materials,
can be realized in an extremely compact format, even as a
single-layer film [8–10].
Recently, extensive studies were performed on bound

states in the continuum (BICs) with exceptionally high
radiative Q factors in one-dimensional (1D) and 2D planar
photonic lattices. In principle, BICs with infinite Q factors
can be found as unusual electromagnetic eigenstates that
remain well localized in open photonic systems, even
though they can coexist with the continuous spectrum of
outgoing waves [11–15]. BICs are associated with various
fascinating physical phenomena, such as the sharp Fano
resonances [16], enhanced nonlinear effects [17], and
topological nature [18,19]. Different types of BICs have
been studied in versatile planar photonic lattices [20–24].
However, the high-Q BICs introduced in the literature thus
far are very sensitive to the wave vector of Bloch modes in
the lattices. Hence, sharp Fano resonances and enhanced
nonlinear effects due to the high-Q Bloch modes can be
obtained at a discrete specific incident angle. Small
variations in the incident angle significantly reduce the
resonance Q factor in spectral responses.
In this Letter, we introduce the concept of Fourier-

component-engineered (FCE) metasurfaces that do not

possess the first Fourier harmonic component in the
periodically modulated lattice parameters and demonstrate
that the metasurfaces can support the continuum of high-Q
bound states in a wide range of wave vectors instead of a
specific discrete wave vector. Guided modes in 1D or 2D
FCE metasurfaces exhibit noticeably increased radiative Q
factors, as out-of-plane radiation occurs due to the first
Fourier harmonic component of periodic modulations.
Two types of FCE metasurfaces that utilize the spatially
engineered dielectric function and thickness profile, respec-
tively, are presented and analyzed.
Figure 1(a) illustrates the simplest representative 1D

photonic lattice, i.e., binary diffraction grating (BDG),
consisting of high (ϵa) and low (ϵb) dielectric constant
materials. The thickness of the grating is t, and the width of
the high dielectric constant part is ρΛ, whereΛ is the period
of the grating. The BDG layer acts as a waveguide, as well
as a diffracting element, because its average dielectric
constant ϵav ¼ ρϵa þ ð1 − ρÞϵb is larger than that of sur-
rounding medium (ϵs). The periodic modulations in the
dielectric constant generate photonic band gaps at the
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FIG. 1. (a) Schematic of conventional 1D BDG that supports
leaky guided modes. (b) Photonic band gaps. (c) Illustration of
coupling processes that induces a second band gap.
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Bragg condition, as shown in Fig. 1(b). The first stop band
(n ¼ 1) in the yellow region is not associated with the
leaky-wave effects, as it is protected by total internal
reflection. Near the second stop band (n ¼ 2) in the white
region, leaky-wave effects occur, because Bloch modes are
described by complex eigenfrequencies Ω ¼ ΩRe þ iΩIm.
In this study, we focus on the second band gap of
the fundamental TE0 mode, because high-Q BICs are
associated with the second stop bands in numerous cases.
As conceptually illustrated in Fig. 1(c), the second leaky
stop band is formed primarily by the direct coupling h2
with jΔkzj ¼ 2K between two counterpropagating waves
∼ expð�iKzÞ, where K ¼ 2π=Λ is the magnitude of
the grating vector, and secondarily by the radiative
coupling h1 with jΔkzj ¼ K between the guided and
radiating waves [25].
We first show that the coupling processes h1 and h2 are

associated with the first and second Fourier harmonic
components, respectively, and the out-of-plane radiation
loss is caused by the first Fourier harmonic. The eigen-
frequencies of the Bloch modes in the BDGs can be
obtained by solving the 1D wave equation given by [26]

� ∂2

∂x2 þ
∂2

∂z2
�
Eyðx; zÞ þ ϵðx; zÞk20Eyðx; zÞ ¼ 0; ð1Þ

where k0 denotes the wave number in free space.
Equation (1) can be solved by expanding the periodic
dielectric function ϵðx; zÞ in a Fourier series and the electric
field Ey as a Bloch form [27]. For the BDG with inversion
symmetry, the dielectric function can be expanded in an even
cosine function series ϵðzÞ ¼ P∞

0 ϵn cosðnKzÞ, where the
Fourier coefficients are given by ϵ0 ¼ ϵav and ϵn≥1 ¼
ð2Δϵ=nπÞ sinðnπρÞ. For a clear insight into the formation
of the second stop band, we use a simple semianalytical
approach, in which only the zeroth, first, and second Fourier
harmonics are retained for the dielectric function, and
the spatial electric field distribution is approximated as
Eyðx;zÞ¼ ½AexpðþiKzÞþBexpð−iKzÞ�φðxÞþErad, where
A and B are slowly varying envelopes of the two counter-
propagating waves, φðxÞ characterizes the mode profile of
the unmodulated waveguide, and Erad represents the radiat-
ing diffracted wave [28]. Solving the wave equation with the
approximated dielectric function and field distributions,
the dispersion relations near the second stop band can be
written as

ΩðkzÞ ¼ Ω0 − ½ih1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ ðh2 þ ih1Þ2

q
�=ðKh0Þ; ð2Þ

where Ω0 is the Bragg frequency under the vanishing index
modulation (Δϵ ¼ 0), and the coupling coefficients are
given by

h0 ¼ Ω
Z

∞

−∞
ϵ0ðxÞφðxÞφ�ðxÞdx; ð3Þ

h1 ¼ i
K3Ω4ϵ21

8

Z
0

−t

Z
0

−t
Gðx; x0Þφðx0Þφ�ðxÞdx0dx; ð4Þ

h2 ¼
KΩ2ϵ2

4

Z
0

−t
φðxÞφ�ðxÞdx; ð5Þ

where Gðx; x0Þ denotes the Green’s function for the dif-
fracted field [25,29,30]. The dispersion relations in Eq. (2)
can be obtained by calculating the coupling coefficients in
Eqs. (3)–(5). Details of the mathematical process used to
obtain Eq. (2) is provided in the Supplemental Material [31].
Equation (2) indicates that the leaky stop band with two

band edges Ωa ¼ Ω0 þ h2=ðKh0Þ and Ωs ¼ Ω0 − ðh2 þ
i2h1Þ=ðKh0Þ opens at kz ¼ 0. For the conventional BDG
with inversion symmetry, the coupling coefficient h1 is
generally a complex value, whereas h0 and h2 are real
values. Except for the symmetry-protected BIC with purely
real frequency Ωa, Bloch modes near the second stop band
generally suffer radiation loss, because they have complex
frequencies, as indicated in Eq. (2). Because the second
stop band opens at the second-order Γ point (kz ¼ K in the
extended Brillouin zone) with the Bragg condition
kz ¼ qðπ=pÞ, where p is the period of the dielectric
constant modulation and q represents the Bragg order, it
is reasonable to interpret that the coupling coefficients h1
and h2 represent the second-order Bragg effect due to the
first Fourier harmonic, ϵ1 cosðKzÞ, and the first-order
Bragg effect due to the second Fourier harmonic,
ϵ2 cosð2KzÞ, respectively. Without h1, in the vicinity of
the Γ point, guided modes become BICs irrespective
of kz with the real eigenfrequencies given by ΩðkzÞ ¼
Ω0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ h22

p
=ðKh0Þ. Inspired by the analytical dis-

persion relations, we introduce and analyze FCE
metasurfaces without the first Fourier harmonic component
through rigorous finite element method (FEM) simulations.
Since the coupling coefficient h1 is due to ϵ1 cosðKzÞ,
we make the h1 zero by eliminating the first Fourier
harmonic component from the original steplike dielectric
functions.
In Fig. 2, we compare the key properties of the

conventional BDG and those of the corresponding FCE
metasurface. As shown in Fig. 2(a), the FCE meta-
surface has complex dielectric functions ϵa − ϵ1 cosðKzÞ
and ϵb − ϵ1 cosðKzÞ, when jzj < ρΛ=2 and jzj ≥ ρΛ=2,
respectively, whereas the conventional BDG has simple
steplike dielectric functions with ϵa and ϵb. The simulated
dispersion relations illustrated in Fig. 2(b) show that the
second band gap opens at kz ¼ 0 for both the conventional
BDG and the FCE metasurface. Dispersion curves for the
BDG and the FCE metasurface seem similar, and the
spatial electric field (Ey) distributions in the insets show
that symmetry-protected BICs with asymmetric field
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distributions appear at upper band edges in both the BDG
and the FCE metasurface. However, a noticeable difference
between the conventional BDG and the FCE metasurface
can be observed from the symmetric spatial electric field
distributions of the lower edge mode. While the lower edge
mode in the BDG is radiative out of the lattice, that in the
FCE metasurface is appropriately localized in the lattice,
even though it is not protected by the symmetry mismatch.
The effect of the first Fourier harmonic component is
likewise clearly seen by investigating the radiative Q
factors as a function of kz plotted in Fig. 2(c). In the
BDG, the BIC in the upper band exhibits a Q factor that is
larger than 1015 at the Γ point, whereas the Q values
decrease abruptly and approach the value of the Q factor of
leaky modes (∼103) in the lower band, as kz moves away
from the Γ point. Similarly, in the FCE metasurface, the

BIC also exhibits aQ factor that is larger than 1015, and the
Q values decrease as kz moves away from the Γ point.
However, the Bloch modes in both the upper and lower
band branches have high Q values (∼108) in the computa-
tional range of jkzj ≤ 0.12K. The Q factors in the FCE
metasurface are approximately 105 times larger than those
in the conventional BDG with the same lattice parameters
except for the profile of the dielectric function.
The symmetry-protected BICs at the Γ point are per-

fectly embedded eigenvalues with an infinite Q factor and
vanishing resonance linewidth, because they are perfectly
decoupled from external waves. In diverse practical appli-
cations, quasi-BICs with finite high Q values and narrow
spectral responses via resonant coupling with external
waves are favorable. Figure 2(d) illustrates the transmission
spectra through the BDG and FCE metasurface for three
different values of incident angles θ ¼ 0°, 1°, and 7°. At
normal incidence with θ ¼ 0°, the BDG structure exhibits
only the low-Q resonance by the lower band edge mode.
The embedded BIC in the upper band edge mode, a green
solid circle in the transmittance curve, does not generate the
resonance effect. When θ ¼ 1°, the simulated transmittance
curve through the conventional BDG exhibits low-Q
resonance by the lower band mode and high-Q resonance
in the upper band mode. As θ increases further, the
resonance linewidth in the upper band mode in the BDG
increases rapidly and becomes close to that of the lower
band mode. Two low-Q resonances by the upper and lower
band modes are observed in the spectral response when
θ ¼ 7°. Similarly, the transmittance curve through FCE
metasurface does not show the embedded BIC in the upper
band when θ ¼ 0°. However, the resonance linewidth in the
lower band mode in the metasurface is extremely narrow,
irrespective of the incident angle θ, unlike the case of
conventional BDG. As θ > 0 increases, two quasi-BICs by
the lower and upper band modes are observed in the
transmission curves, and the resonance linewidths remain
narrow when θ ¼ 7°. Numerous efforts have been devoted
to realizing high-Q resonant modes in photonic crystal
structures. However, high-Q modes reported in previous
studies were obtained at specific discrete wave vectors [40].
Because the proposed FCE metasurface can support con-
tinuous quasi-BICs in the vicinity of the second stop bands,
they could find useful applications to overcome the discrete
nature of the high-Q resonant mode in conventional
photonic lattices. As an example of possible applications
of high-Q bound states in the FCE metasurface, a
discussion on the Dirac cone dispersion is presented in
the Supplemental Material [31].
We now show that the radiative Q factors in the 2D

lattices can also be increased by eliminating the appropriate
Fourier components in the original dielectric function. As
illustrated in Fig. 3(a), we consider a simple 2D lattice
composed of square arrays of square-shaped high dielectric
constant (ϵa) materials in the background medium with a
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low dielectric constant (ϵb). The dielectric function can be
expanded as

ϵðx; yÞ ¼ ϵav þ
X∞

ðm;nÞ≠ð0;0Þ
γm;neiðmKxþnKyÞ; ð6Þ

where the Fourier coefficients are given by ϵav ¼ ρ2ϵa þ
ð1 − ρ2Þϵb and γm;n ¼ ρ2ΔϵsincðmπρÞsincðnπρÞ. In the 1D
case, the first Fourier component with a spatial period of Λ
was removed. As an extension of the 1D study to the 2D
grating structure, we removed the two Fourier harmonic
components, 2γ1;0 cosðKxÞ and 2γ0;1 cosðKyÞ with a spatial
period of Λ, from the original dielectric function, as
illustrated in Fig. 3(b). Figure 3(c) shows that the second
band gaps open at the Γ point, and the dispersion curves for
the conventional 2D grating and FCE metasurface are very
similar. There are four bands, A, B, C, and D, in the vicinity
of the Γ point [41]. Spatial electric field distributions and
radiative properties of the four band edge modes are
presented in the Supplemental Material [31]. The existence
of the BICs can be observed from the radiative Q factors
plotted in Fig. 3(d). In both the conventional 2D grating and
FCE lattice, the symmetry-protected BICs in bands C and
D exhibitQ factors larger than 1012 at the Γ point; however,
the Q values decrease noticeably as kz moves away from
the Γ point. Nevertheless, the simulated radiative Q factors

in the FCE metasurface are approximately 2 × 103 times
larger than those in the conventional 2D grating.
Since the dielectric functions of the FCE metasurfaces

shown in Figs. 2(a) and 3(b) have some fine details, the
practical implementation of the FCE metasurface with the
engineered spatial dielectric function is challenging.
Currently, the required dielectric constant profile can be
implemented in long wavelength regions, such as micro-
waves, where diverse metamaterials consisting of deep
subwavelength size components are feasible [42,43]. As
the nanofabrication technology continues to improve, it
could be possible to realize the FCE metasurface operating
at optical wavelengths in the future. To visualize this, as
shown in Fig. 4(a), we consider a 1D silicon-air metasur-
face consisting of air slits Sj in a silicon slab (ϵSi ¼ 12.11 at
λ ¼ 1.55 μm). Based on the effective medium theory [44],
20 air slits are appropriately located in the unit cell of size
Λ, such that the effective dielectric function of the silicon-
air metasurface mimics that of the FCE metasurface, as
illustrated in Fig. 4(b). Even though the effective dielectric
function of the silicon-air metasurface varies in discrete
steps, not only the dispersion curves of the silicon-air
metasurface in Fig. 4(c) are nearly the same as those of
the FCE metasurface in Fig. 2(b), but also the radiative Q
factors in the silicon-air metasurface in Fig. 4(d) are
comparable to the high Q values in the FCE metasurface
in Fig. 2(c). The radiative Q factors in the silicon-air
metasurface are approximately 104 times larger than those
in the conventional BDG in Fig. 2(c). From Fig. 4, it is
reasonable to infer that the high Q values in the FCE
metasurfaces are not affected seriously by the small
imperfections introduced in the engineered dielectric con-
stant profile.
We note that the proposed concept of eliminating Fourier

harmonic components can be extended to zero-contrast
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grating (ZCG) structures [45,46]. Because the ZCG exhib-
its photonic band gaps and leaky-wave effects due to the
spatially modulated thickness profile, the FCE metasurface
corresponding to the ZCG can be designed by eliminating
the first Fourier harmonic component in the spatially
modulated thickness profile. We verified that the radiative
Q factors in the FCE metasurface corresponding to the
ZCG are noticeably increased owing to the absence of the
first Fourier harmonic component in the spatial thickness
profile (see the Supplemental Material [31]). From a
practical point of view, manipulation of the spatial thick-
ness profile is more realistic than that of the spatial
permittivity profile. Current state-of-the-art nanofabrication
technology can be utilized to implement the required
spatial thickness profile in the unit cell with submicron
size [47–49]. The Supplemental Material [31] further
presents that the radiativeQ factors in the FCE metasurface
are not seriously affected by small imperfections intro-
duced in the engineered thickness profile.
In conclusion, we introduced the concept of FCE

metasurfaces without the first Fourier harmonic component
in spatially modulated lattice parameters, such as the
dielectric constant and thickness, and demonstrated that
the new types of lattices with 1D and 2D geometries
support the continuous quasi-BICs in the vicinity of the
second stop bands. The FCE metasurfaces exhibit notice-
ably increased radiative Q factors, as out-of-plane radiation
is attributed to the first Fourier harmonic component of the
periodic modulation in lattice parameters. Because the
continuous high-Q bound states are robust to small
imperfections introduced in the engineered thickness pro-
file and dielectric function, the FCE metasurfaces can be
utilized in various applications associated with high-Q
resonant Bloch modes.
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