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We construct black hole solutions with spin-induced scalarization in a class of models where a scalar
field is quadratically coupled to the topological Gauss-Bonnet term. Starting from the tachyonically
unstable Kerr solutions, we obtain families of scalarized black holes such that the scalar field has either
even or odd parity, and we investigate their domain of existence. The scalarized black holes can violate the
Kerr rotation bound. We identify “critical” families of scalarized black hole solutions such that the
expansion of the metric functions and of the scalar field at the horizon no longer allows for real coefficients.
For the quadratic coupling considered here, solutions with spin-induced scalarization are entropically
favored over Kerr solutions with the same mass and angular momentum.
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Introduction.—Compact objects in gravity theories
involving scalar degrees of freedom can undergo a phase
transition induced by a tachyonic instability known as
“spontaneous scalarization”: the solutions of the general
relativistic field equations become unstable in certain
regions of parameter space, developing scalar “hair.”
This instability comes in different flavors. Matter-induced
spontaneous scalarization was originally proposed for
compact neutron stars in scalar-tensor theories [1], but
more recently it was shown that spontaneous scalarization
is possible also in the absence of matter. Curvature-induced
spontaneous scalarization of black holes (BHs) was first
studied in Einstein-scalar-Gauss-Bonnet (EsGB) theories
[2–4]. Charge-induced scalarization can also occur in
Einstein-scalar-Maxwell theories [5].
In this Letter, we consider EsGB theories with action

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂μϕÞ2 þ fðϕÞR2

GB

�
; ð1Þ

where we use geometrical units (G ¼ c ¼ 1), and ϕ is a
real scalar field coupled to the Gauss-Bonnet (GB)
invariant R2

GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2.
We will focus on the simple quadratic coupling function

fðϕÞ ¼ 1
8
ηϕ2. Early work showed that the GB invariant

acts as a tachyonic mass term for the scalar (“curvature-
induced” BH scalarization) when η > 0 [2,3], but here we
focus on the case η < 0. Recent work pointed out that the
Kerr BH solutions of general relativity can still scalarize
when η < 0 [6]: the Gauss-Bonnet scalar for the Kerr
metric can become negative close to the horizon, producing
“spin-induced” scalarization when the dimensionless Kerr
spin parameter j≡ J=M2 ≳ 0.5 [6]. This conclusion was
confirmed analytically [7] and numerically [8] by studying

linear perturbations of Kerr BHs. These works concluded
that the instability threshold depends on the GB coupling
η=M2 and on the (even or odd) symmetry of the scalar field
under parity transformations. For small values of the GB
coupling and associated large values of j, the thresholds for
even and odd parity differ, whereas for large values of the
GB coupling the two thresholds almost coincide.
Here we show that stationary and axisymmetric BH

solutions with spin-induced scalar hair do indeed exist in
the nonlinear regime. We construct these BHs numerically,
starting from the respective threshold solutions. We then
vary the input parameters to map out the domain of
existence of scalarized BHs for both even- and odd-parity
scalar fields. The expansions of the metric functions and of
the scalar field at the horizon yield an analytic criterion to
identify critical solutions that form the second boundary of
the domain of existence.
We investigate the thermodynamical stability of these

BH solutions by computing their entropy. Solutions with
curvature-induced scalarization are entropically disfavored
with respect to Schwarzschild and Kerr BHs when fðϕÞ is
quadratic [3,9], but they become entropically favored when
we add a quartic term [10] or for exponential coupling
functions [2,11]. Linear perturbation theory shows that the
entropically favored (disfavored) fundamental scalarized
solutions are mode stable (unstable) [10,12,13]. Here we
find that BH solutions with spin-induced scalarization are
entropically favored over Kerr solutions with the same
mass and angular momentum, but their dynamical stability
remains an open question.
General framework.—The generalized Einstein and

scalar field equations follow by varying the action,
Eq. (1), with respect to the metric gμν and the scalar
field ϕ:
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Gμν ¼ Tμν; ∇2ϕþ df
dϕ

R2
GB ¼ 0; ð2Þ

where the effective stress-energy tensor reads

Tμν ¼ −
1

4
gμν∂ρϕ∂ρϕþ 1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλν þ gλμgρνÞηκλαβR̃ργ

αβ∇γ∂κfðϕÞ; ð3Þ

with R̃ργ
αβ ¼ ηργστRσταβ and ηργστ ¼ ϵργστ=

ffiffiffiffiffiffi−gp
.

To construct stationary, axially symmetric spacetimes
with two commuting Killing vector fields (ξ ¼ ∂t and
η ¼ ∂φ), we employ a Lewis-Papapetrou-type ansatz
[14,15]

ds2 ¼ −beF0dt2 þ eF1ðdr2 þ r2dθ2Þ
þ eF2r2 sin2 θðdφþ ωdtÞ2; ð4Þ

where r is a quasi-isotropic radial coordinate, rH is the
isotropic horizon radius, and b ¼ ½1 − ðr=rHÞ�2. The metric
functions Fi ði ¼ 0, 1, 2) and ω depend on the coordinates
r and θ, and they are even under parity. The scalar field
ϕ ¼ ϕðr; θÞ can be either even or odd with respect to parity
transformation, i.e., ϕ�ðr; π − θÞ ¼ �ϕ�ðr; θÞ. Both par-
ity-even and parity-odd scalar fields are consistent with the
field equations, since the generalized Einstein equations are
quadratic and the generalized Klein-Gordon equation is
linear in ϕ [note that parity is a symmetry only when fðϕÞ
is even in ϕ]. Scalarized BHs with an even scalar field and
no radial nodes are the fundamental scalarized solutions,
whereas those with an odd scalar field are angularly excited
solutions.
The proper set of boundary conditions is obtained

by considering symmetry, regularity, and asymptotic flat-
ness of the solutions. This implies Fið∞Þ ¼ 0 ði ¼ 0;
1; 2Þ;ωð∞Þ ¼ ϕð∞Þ ¼ 0 as r → ∞. For a massless scalar
field, one can construct an approximate solution of the
field equations as a power series in 1=r, with the dominant
term being of monopole type in the even case and of
dipole type in the odd case: ϕþ ¼ Q=rþ � � � and
ϕ− ¼ P cos θ=r2 þ � � �, where Q and P are interpreted as
the scalar charge and the dipole moment of the scalar field,
respectively.
The boundary conditions at the event horizon, located

at a surface of constant r ¼ rH, are obtained by considering
a power-series expansion in terms of δ ¼ ðr − rHÞ=rH:∂rF0ðrHÞ¼1=rH, ∂rF1ðrHÞ¼−2=rH, ∂rF2ðrHÞ¼−2=rH,
ωðrHÞ ¼ ωH, ∂rϕðrHÞ ¼ 0, where ωH is a constant.
On the symmetry axis (θ ¼ 0; π), axial symmetry
and regularity impose ∂θFijθ¼0;π¼0 (i¼0, 1, 2) and
∂θωjθ¼0;π ¼ ∂θϕjθ¼0;π ¼ 0. Since all functions are either
even or odd, it is sufficient to consider the range 0 ≤ θ ≤
π=2 for the angular variable θ in the numerical calculations.
Consequently, we impose the following boundary

conditions on the equatorial plane: ∂θFijθ¼π=2 ¼ 0
(i ¼ 0, 1, 2), ∂θωjθ¼π=2 ¼ ∂θϕþjθ¼π=2 ¼ ϕ−jθ¼π=2 ¼ 0.
From the horizon metric, we obtain the Hawking

temperature [14]

TH ¼ 1

2πrH
eðF0−F1Þ=2: ð5Þ

In fact, the equation Gθ
r ¼ Tθ

r implies that F0=F1 (and
therefore the Hawking temperature) is constant. This
observation can be used to test the numerical accuracy
of our solutions.
The horizon area is given by

AH ¼ 2πr2H

Z
π

0

dθ sin θeðF0þF2Þ=2: ð6Þ

The entropy of Kerr BHs is a quarter of the horizon area
[14], but the entropy of EsGB BHs can be computed as an
integral over the spatial cross section of the horizon [16],
and it acquires an extra contribution:

S ¼ 1

4

Z
ΣH

d2x
ffiffiffi
h

p
ð1þ 2fðϕÞR̃Þ; ð7Þ

where h is the determinant of the induced metric on the
horizon and R̃ is the corresponding scalar curvature.
The mass M and the angular momentum J can be found

from the asymptotic behavior of the metric functions:
gtt ¼ −1þ 2M=rþ � � �, gφt ¼ −2J sin2 θ=rþ � � �.
Numerical results.—To obtain the EsGB BHs with spin-

induced scalarization, we need to solve for the functions
ðF0; F1; F2;ω;ϕÞ subject to the boundary conditions
specified above that guarantee regularity and asymptotic
flatness. REDUCE files with the field equations and expan-
sions are available from the authors upon request.
We provide three input parameters (η, rH, and ωH), and

we follow the numerical procedure of Refs. [9,15]. We
introduce the radial variable x ¼ 1 − rH=r, mapping the
interval ½rH;∞Þ to the interval [0, 1], and discretize the
equations on a nonequidistant grid in x and θ, covering the
integration region 0 ≤ x ≤ 1 and 0 ≤ θ ≤ π=2. We perform
the integrations using the package FIDISOL/CADSOL [17,18],
based on a Newton-Raphson method, and we extract the
physical properties of the BHs when the estimated trunca-
tion error is within the required accuracy, i.e., when the
maximal numerical error for the functions at any point is
estimated to be of order 10−3 or less.
We now address the second boundary of the domain of

existence of scalarized BH solutions, given by the set of
critical solutions. To this end, we consider higher-order
terms of local solutions close to the horizon: F0¼F0;Hþ
δþf0;2δ2=2þ���, Fi¼Fi;H−2δþfi;2δ2=2þ���, (i¼1;2),
ω¼ωHþω2δ

2=2þω3δ
3=6þ���, ϕ ¼ ϕH þ ϕ2δ

2=2þ � � �.
We obtain equations for the coefficients of the higher-

order terms f0;2, f1;2, f2;2, ω3, and ϕ2, which allows us to

PHYSICAL REVIEW LETTERS 126, 011104 (2021)

011104-2



express the higher-order coefficients in terms of F0;H, F1;H,
F2;H, ω2, ϕH, and their first and second derivatives with
respect to θ. Solving these equations yields a quartic
equation for ϕ2. The existence of real solutions of the
quartic equation depends on the sign of the discriminant
D ¼ ðp=3Þ3 þ ðq=2Þ2 of the reduced cubic resolvent,
v3 þ pvþ q ¼ 0. Real solutions exist if DðθÞ ≤ 0 for
0 ≤ θ ≤ π=2. The numerical calculations show that DðθÞ
is always negative for ωH > 0.073. However, for ωH ≤
0.073 the function DðθÞ develops a local maximum, which
tends to zero when η is decreased to some critical value ηcr.
Solutions for η < ηcr cease to exist.
This is demonstrated in Fig. 1, where we show the

dimensionless discriminant Δ≡ 4
27
ðp3=q2Þ þ 1 for ωH ¼

0.065 and decreasing values of η. Note, however, that for
symmetric BHs with large angular momentum, the con-
dition for real solutions is violated at the equator of the
horizon.
We are now ready to discuss the physical properties of

these spin-induced spontaneously scalarized black holes.
To map out their domain of existence, we have calculated
numerous families of scalarized BH solutions with fixed
horizon angular velocity ωH while varying the coupling
constant η.
In Fig. 2, we show various BH properties as functions of

the dimensionless coupling parameter η=4M2 for families
of solutions with fixed values of ωH. The different panels
show the dimensionless scalar charge Q=M (dipole
moment P=M2) for the fundamental even (odd) solutions
(top left), the dimensionless angular momentum j (top
right), the dimensionless horizon area AH=8πM2 (bottom
left), and the dimensionless Hawking temperature THM
(bottom right).
Figure 2 provides important new insight into the domain

of existence of BHs with spin-induced scalarization.
Bifurcation from the Kerr solutions takes place at some

threshold solutions (“Kerr-thr” in the legend) representing
the first boundary of the domain of existence. These
thresholds are rather close for even and odd solutions,
especially for large values of jη=M2j. The second boundary
is given by the critical solutions (“crit” in the legend) such
that the discriminant DðθÞ vanishes somewhere. For large
values of jη=M2j, the threshold lines and the critical lines
approach each other, and the domain of existence becomes
narrower.
If present, the third boundary of the domain of existence

should correspond to extremal scalarized BHs, which are
numerically difficult to explore. The bottom-right panel of
Fig. 2 shows that the Hawking temperature approaches zero
in this limit. The previously studied case of rotating
dilatonic GB BHs suggests that these extremal scalarized
solutions might not be regular [19–21]. Some of these
solutions have angular momentum exceeding the Kerr
bound j ¼ 1. In fact, the bound is already exceeded by
nonextremal odd solutions when jη=M2j < 1.53. For even
solutions, the Kerr bound is exceeded only marginally
when jη=M2j < 0.55.
The violation of the Kerr bound is also clear from Fig. 3,

where we plot the dimensionless entropy S=2πM2 as a
function of j ¼ J=M2 for the same families of solutions.
The inset of the figure shows the charge-to-mass ratioQ=M
as a function of j. Interpolation yields a maximum value
Q=M ¼ 0.1225 at j ¼ 0.9989 < 1. Most importantly,
Fig. 3 allows us to draw a crucial conclusion: for a given
mass and angular momentum, BHs with spin-induced
scalarization have larger entropy than Kerr BHs, and
therefore they are entropically favored. Close to the Kerr
bound, the area of even- and odd-parity BHs with spin-
induced scalarization can exceed the area of their Kerr
counterparts by about 30%. This could have interesting
observational consequences, e.g., in terms of telling them
apart from Kerr BHs with very long baseline interferometry
of their shadow [22].
Conclusions.—Starting from even- and odd-parity

threshold solutions, we have mapped out the domain of
existence of BHs with spin-induced scalarization in EsGB
theories with a quadratic coupling function. The second
boundary of the domain of existence corresponds to critical
solutions beyond which the horizon expansion of the metric
functions and of the scalar field no longer admit real
coefficients. If present, a third boundary should correspond
to extremal scalarized BHs, but this regime is hard to
explore numerically. Scalarized BHs can violate the Kerr
bound when jη=M2j < 1.53 (jη=M2j < 0.55) for odd (even)
solutions. This violation seems to occur only in the vicinity
of the extremal solutions, and it is of the order of 5% (0.5%)
for odd (even) solutions.
Scalarized BHs are entropically favored over Kerr BHs

with the same mass and angular momentum. If previous
studies of curvature-induced scalarization are a useful
analogy, this would suggest that BHs with spin-induced

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

Δ

θ

ωH = 0.065

η = -165

η = -170

η = -175

η = -179

FIG. 1. Dimensionless discriminant as a function of θ for ωH ¼
0.065 and selected values of η. When η < ηcr ≃ −179, the local
maximum becomes positive, and scalarized BH solutions
cease to exist.
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scalarization are (linearly) mode stable under perturbations.
This may come as a surprise, since we have employed a
simple quadratic coupling function; however, we chose a

negative coupling constant in contrast to most previous
work on curvature-induced scalarization. The dynamical
stability of BHs with spin-induced scalarization is an
important open question that will require further work.
Perturbations of rotating BHs in modified gravity are a
notoriously difficult technical problem because the equa-
tions are nonseparable (see, e.g., Ref. [23] for recent
progress on scalar perturbations in a slow-rotation expan-
sion). Time evolutions may provide a practical way to find
out if these solutions are dynamically stable.
Last but not least, the problems of well-posedness,

gravitational collapse, and gravitational waveforms from
binary BH mergers in EsGB theories are very active
research areas in analytical and numerical relativity
[24–31]. The new solutions discussed in this Letter may
have important implications in this context.
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Note added—Recently, we became aware of a manuscript
in which they derive independently similar results for a
different coupling function [32].
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