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We derive a thermodynamic uncertainty relation for general open quantum dynamics, described by a joint
unitary evolution on a composite system comprising a system and an environment. By measuring the
environmental state after the system-environment interaction, we bound the counting observables in the
environment by the survival activity, which reduces to the dynamical activity in classical Markov processes.
Remarkably, the relation derived herein holds for general open quantum systems with any counting
observable and any initial state. Therefore, our relation is satisfied for classical Markov processes with
arbitrary time-dependent transition rates and initial states. We apply our relation to continuous measurement
and the quantumwalk to find that the quantum nature of the system can enhance the precision.Moreover, we
can make the lower bound arbitrarily small by employing appropriate continuous measurement.
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Introduction.—Higher precision demands more resour-
ces. Although this fact is widely accepted, it has only
recently been theoretically proved. The thermodynamic
uncertainty relation (TUR) [1–15] (see [16] for a review)
serves as a theoretical basis for this notion, and it states that
current fluctuations, quantified by a coefficient of variation,
are bounded from below by thermodynamic costs, such as
entropy production and dynamical activity. It predicts the
fundamental limit of biomolecular processes and thermo-
dynamic engines and it can be applied to infer the entropy
production of thermodynamic systems in the absence of
detailed knowledge about them [17–21].
Much progress has been made on the TUR for classical

stochastic thermodynamics. Quantum analogs of the TUR
have been recently carried out, but they are still at an early
stage. Many existing studies on quantum TURs [22–29] are
concerned with rather limited situations. In the first place,
although an observable of interest in the TUR of classical
stochastic thermodynamics is well defined, there is no
consensus regarding specific observables that should be
bounded in the TURs of quantum systems. In the present
Letter, we obtain a TUR for general open quantum systems,
which can be described as a joint unitary evolution of a
composite system comprising a principal system and an
environment. Using the composite representation, we
formulate a TUR in open quantum systems as a bound
for the environmental measurement by using the quantum
estimation theory [30–33]. The obtained relation exhibits
remarkable generality. It holds for general open quantum
dynamics with any counting observable and any initial
density operator. Moreover, our bound applies to any
classical time-dependent Markov process and counting
observable. Our TUR bounds the fluctuations in the
counting observables by a quantity referred to as a survival

activity, which reduces to the dynamical activity [34]
of classical Markov processes in a particular limit. We
apply our TUR to the continuous measurement and
the quantum walk and find that the system’s quantum
nature can enhance the precision of the observables and
that an arbitrary small lower bound of the fluctuations
can be achieved by employing appropriate continuous
measurement.
Results.—Let us consider a system S and an environment

E. The environment comprises an orthonormal basis
fjmigMm¼0. We assume that the initial states of S and E
are jψi and j0i, respectively. Because S and E interact from
t ¼ 0 to t ¼ T via a unitary operatorU acting on Sþ E, the
state of Sþ E at t ¼ T is jΨðTÞi ¼ Ujψi ⊗ j0i [Fig. 1(a)].
Typically, in open quantum systems, the primary object of
interest is the state of the principal system S after the
interaction. In contrast, we here focus on the state of the
environment E after the interaction. For example, in
continuous monitoring of photon emissions in open quan-
tum systems, photons emitted into the environment during
½0; T� can be equivalently obtained by measuring the
environment at final time t ¼ T. Therefore, the environ-
ment includes all information about the measurement
records of the emitted photon.
Suppose that a measurement is performed on the

environment at t ¼ T by an Hermitian operator G
[Fig. 1(a)]. Here, G admits the eigendecomposition
G ¼ P

m gðmÞjϕmihϕmj, where jϕmi and gðmÞ are the
eigenvector and eigenvalue of G, respectively. Using
jϕmi, the state of Sþ E at t ¼ T can be expressed as [35]

jΨðTÞi ¼ Ujψi ⊗ j0i ¼
XM
m¼0

Vmjψi ⊗ jϕmi: ð1Þ
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Here, Vm ≡ hϕmjUj0i is the action on S associated
with a transition in E from j0i to jϕmi and satisfiesP

M
m¼0 V

†
mVm ¼ IS, where IS is an identity operator in S.

Although Eq. (1) is a simple interaction model, it can
describe the general open quantum dynamics starting from
pure states. When tracing out E in Eq. (1), we obtain
the Kraus representation ρðTÞ ¼ TrE½jΨðTÞihΨðTÞj� ¼P

M
m¼0 Vmjψihψ jV†

m. We hereafter assume that

gð0Þ ¼ 0; ð2Þ

whose physical meaning is explained as follows. For
illustrative purposes, suppose that jϕmi ¼ jmi. Here,
gð0Þ is associated with jϕ0i ¼ j0i in E after the interaction
[Eq. (1)]. When the state of the environment after the
interaction is j0i, the environment remains unchanged
before and after the interaction. For the photon-counting
problem, gðmÞ encodes the number of photons emitted into
the environment. In this case, “no change” in the environ-
ment corresponds to no photon emission. Therefore, the
condition of Eq. (2) is naturally satisfied by a photon-
counting case. Because the condition of Eq. (2) constitutes
the minimum assumption for any counting statistics,
we refer to observables satisfying Eq. (2) as counting
observables. For general open quantum dynamics and
measurement of the environment, we wish to find
the bound for the fluctuation of G. Let ρ be the initial
density operator of S. The mean and variance of G are
hGi≡ hΨðTÞjIS ⊗ GjΨðTÞi and Var½G�≡ hG2i − hGi2,
respectively. Using the quantum Cramér-Rao inequality
[30–33], we find the following bound for the coefficient of
variation of G:

Var½G�
hGi2 ≥

1

Ξ
; ð3Þ

where

Ξ≡ TrS½ðV†
0V0Þ−1ρ� − 1: ð4Þ

Equation (3) is the first main result of this Letter, and its
proof is provided in the derivation section near the end.
Equation (3) holds for any open quantum system as long
as V†

0V0 is positive definite, any counting observable G,
and any initial density operator ρ in S. Unless V†

0V0 is
positive definite, ðV†

0V0Þ−1 is not well defined in Eq. (4),
indicating that V0 should be a full-rank matrix [36].
Equation (3) also holds for any (time-dependent) classical
Markov process with any counting observable. V0 is an
operator corresponding to no change in the environment,
and, therefore, the expectation of the inverse of V†

0V0

quantifies activity of the dynamics. For classical Markov
processes, Ξ becomes the reciprocal expectation of the
survival probability, which reduces to the dynamical
activity [34] in a short time limit [see Eq. (13)].
Therefore, we refer to Ξ as a survival activity in the present
Letter. The generality of the bound implies that Ξ is a
physically important quantity. When there are more than
one mutually commutable counting observables Gi, we can
obtain a multidimensional variant of Eq. (3), as derived in
Refs. [40,41] (see [36] for details).
We note the differences between the present TUR and

related quantum TURs. Reference [24] obtained the TUR
for quantum jump processes. In this case, the TUR was
derived using a semiclassical approach via the large
deviation principle for T → ∞. Reference [26] used the
classical Cramér-Rao inequality to derive a TUR in
quantum nonequilibrium steady states. Their bound con-
cerns instantaneous currents, which are defined by current
operators and derived under a steady-state condition.
Recently, we derived a quantum TUR for arbitrary con-
tinuous measurement satisfying a scaling condition [28].
However, the bound of Ref. [28] requires a steady-state
condition under Lindblad dynamics, whereas Eq. (3) is
satisfied for general open quantum dynamics.
We also comment on the relation between the quantum

speed limit (QSL) [42–44] and the TUR. The QSL is
concerned with the evolution speed, and quantum estima-
tion theory has been reported to play an important role
in the QSL [45–47]. While the QSL focuses on the

(b) (c)(a)

FIG. 1. Principal system S and environment E. (a) Basic model. The initial states of S and E are jψi and j0i, respectively. The
composite system Sþ E undergoes a unitary transformation U, and E is measured by the observable G. (b) Continuous measurement
case (N ¼ 3). The initial states of the principal system and environment are jψi and j02; 01; 00i, respectively. The initial substate j0ki
interacts with S within the time interval ½tk; tkþ1� via a unitary operator Utk. The measurement record is obtained by measuring E at
t ¼ T. (c) Quantum walk case. The initial states of chirality (principal system) and position (environmental system) are jRi and j0i,
respectively. The principal and environmental systems interact at each step via a unitary operator U. The position is obtained by
measuring E at step t ¼ T.
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transformation of the principal system, the TUR in this
Letter is concerned with the evolution of the environment.
Therefore, the QSL and TUR bound the evolution of the
complementary states by thermodynamic quantities.
Quantum continuous measurement.—To observe the

physical meaning of the main result, we apply Eq. (3) to
continuous measurement in open quantum systems. Let us
consider a Lindblad equation [48,49]:

dρ
dt

¼ −i½H; ρ� þ
XM
m¼1

Dðρ; LmÞ; ð5Þ

where H is a Hamiltonian, Dðρ;LÞ≡ ½LρL†−fL†L;ρg=2�
is a dissipator, and Lm (1 ≤ m ≤ M) is an mth jump
operator with M being the number of jump operators
(½•; •� and f•; •g denote the commutator and anticommuta-
tor, respectively). Within a sufficiently small time interval
½t; tþ Δt�, one possible Kraus representation for Eq. (5) is
ρðtþ ΔtÞ ¼ P

M
m¼0 XmρðtÞX†

m, where

X0 ≡ IS − iΔtH −
1

2
Δt

XM
m¼1

L†
mLm; ð6Þ

Xm ≡ ffiffiffiffiffiffi
Δt

p
Lm ð1 ≤ m ≤ MÞ: ð7Þ

Xm satisfies the completeness relation
P

M
m¼0 X

†
mXm ¼ IS

up to OðΔtÞ.
By using the input-output formalism [50–52] (see

Ref. [53] for comprehensive description), we can describe
the time evolution induced by the Kraus operators of
Eqs. (6) and (7) as an interaction between the system S
and environment E. Let N be a sufficiently large natural
number. We discretize the time by dividing the interval
½0; T� intoN equipartitioned intervals and defineΔt≡ T=N
and tk ≡ kΔt. We assume that the environmental ortho-
normal basis is jmN−1;…; m0i, where a subspace jmki
interacts with S within the time interval ½tk; tkþ1� via a
unitary operator Utk [Fig. 1(b)]. When the initial states of S
and E are jψi and j0N−1;…; 00i, respectively, the state of
Sþ E at time t ¼ T is

jΨðTÞi ¼ UtN−1
� � �Ut0 jψi ⊗ j0N−1;…; 00i

¼
X
m

XmN−1
� � �Xm0

jψi ⊗ jmN−1;…; m0i; ð8Þ

wherem≡ ½mN−1;…; m0�, Xmk
≡ hmkjUj0ki is an operator

associated with the action of jumping from j0ki to jmki in
E, and jmN−1;…; m0i provides the record of jump events.
When the environment is measured using jmN−1;…; m0i as
a basis, the unnormalized state of the principal system is
XmN−1

� � �Xm0
jψi, which is referred to as a quantum

trajectory conditioned on the measurement record m ¼
½mN−1;…; m0�. The evolution of a quantum trajectory is

given by a stochastic Schrödinger equation [54–56]: dρ ¼
−i½H; ρ�dt þ P

M
m¼1 ðρTrS½LmρL

†
m� − fL†

mLm; ρg=2ÞdtþP
M
m¼1 ðLmρL

†
m=TrS½LmρL

†
m� − ρÞdN m, where dN m is a

noise increment equal to 1 when the mth jump event is
detected between t and tþ dt; otherwise, dN m ¼ 0. Given
the complete history of ½N mðtÞ�Mm¼1, the conditional expect-
ation is hdN mðtÞi ¼ TrS½LmρðtÞL†

m�dt, where ρðtÞ is a
solution of the stochastic Schrödinger equation.
We consider a counting observable G in the continuous

measurement, which counts the number of jump events
within ½0; T�. When expressed classically, we may write
G ¼ P

M
m¼1GmN m, whereGm ∈ R is the weight of themth

jump and N m ¼ R
T
0 dN m is the number of mth jumps

during ½0; T�. Because the state of Sþ E at time t ¼ T is
given by Eq. (8), G can be defined quantum mechanically
by G ¼ P

m gðmÞjmihmj. Because m is a record of jump
events, gðmÞ should be defined so that it counts and weights
each jump event according to the classical definition of G.
When the environment remains unchanged before and after
the interaction, N m ¼ 0 for all m ≥ 1. Therefore, G
naturally satisfies the condition of Eq. (2). X0 in Eq. (6)
corresponds to a no-jump event within ½t; tþ Δt�. Because
V0 in Eq. (4) corresponds to the action associated with no-
jump events within ½0; T�, it is given by V0 ¼ limN→∞ XN

0 .

We obtain V0 ¼ e−T½iHþð1=2Þ
P

M
m¼1

L†
mLm�, and the survival

activity is expressed as

Ξ¼ TrS½eT½iHþð1=2Þ
P

M
m¼1

L†
mLm�eT½−iHþð1=2Þ

P
M
m¼1

L†
mLm�ρ�− 1:

ð9Þ

When H and Lm depend on time, Ξ is formally given
by [36]

Ξ ¼ TrS
h
T̄e

R
T

0
dtiHðtÞþ

P
M
m¼1

L†
mðtÞLmðtÞ=2

× Te
R

T

0
dt−iHðtÞþ

P
M
m¼1

L†
mðtÞLmðtÞ=2ρ

i
− 1; ð10Þ

where T and T̄ are time-ordering and anti-time-ordering
operators, respectively. Equations (9) and (10) are the
second main result of the present Letter. Equation (3) with
Eq. (10) is satisfied for the continuous measurement of
jump events in any Lindblad equation starting from any
initial density operator.
Equations (6) and (7) are not the only Kraus representa-

tions compatible with the Lindblad equation (5). A Kraus
operator Ym compatible with Eq. (5) (i.e.,

P
m XmρX

†
m ¼P

m YmρY
†
m) can be obtained by Ym0 ¼ P

m Jm0mXm, where
Jm0m is an arbitrary unitary operator. This unitary freedom
of the Kraus operator corresponds to that in the measure-
ment basis of the environment. As mentioned above, Xm is
obtained by the measurement basis jmi for each time
interval, that is, Xm ¼ hmjUj0i, while Ym0 is derived via a
different measurement basis jφm0 i≡P

M
m¼0ðJ†Þmm0 jmi,
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specifically, Ym0 ¼ hφm0 jUj0i. Ξ in Eq. (9) depends on how
we measure the environment, that is, how we unravel the
Lindblad equation. To observe the consequences of differ-
ent unravellings, for simplicity, we consider a case having
only one jump operator L. The Lindblad equation is
invariant under the following transformation: H → H −
ði=2Þðζ�L − ζL†Þ and L → Lþ ζIS, where ζ ∈ C is an
arbitrary parameter. A physical interpretation of this trans-
formation is presented in Refs. [57–59]. Under this trans-
formation, Ξ becomes (for time-independent L and H)
Ξ ¼ ejζj2TTrS½eT½iHþð1=2ÞL†Lþζ�L�eT½−iHþð1=2ÞL†LþζL†�ρ� − 1.
Therefore, for jζj → ∞, Ξ scales as Ξ ∼ ejζj2T ; this indicates
that we can make the lower bound of Eq. (3) arbitrarily
small by employing a continuous measurement with a large
jζj. This result may appear contradictory to that obtained in
Ref. [28], which reported a unified lower bound valid for
any continuous measurements. Note that the continuous
measurements considered in Ref. [28] require a scaling
condition, which is not satisfied for the measurements
corresponding to the transformation above.
Classical Markov processes.—When we emulate

classical Markov processes with the Lindblad equation,
½H;

P
M
m¼1 L

†
mLm� ¼ 0 holds. In this case, from Eq. (9), we

obtain

ΞCL ¼ TrS½eT
P

M
m¼1

L†
mLmρ� − 1; ð11Þ

where the subscript “CL” is shorthand for “classical.”
Therefore, noncommutativeness ½H;

P
M
m¼1 L

†
mLm� ≠ 0

can be a benefit of the quantum systems over their classical
counterparts. We evaluate the effect of noncommutative-
ness in the survival activity. Assuming that T is sufficiently
small, a simple calculation yields [36]

Ξ ¼ ΞCL þ
1

2
T2χ þOðT3Þ; ð12Þ

where χ ≡ i
P

M
m¼1 TrS½½H;L†

mLm�ρ� represents the expect-
ation of the commutative relation. When χ > 0, the system
gains a precision enhancement due to its quantum nature.
As a corollary of the continuous measurement, we can

obtain a specific expression of ΞCL for classical Markov
processes. We consider a classical Markov process with NS
states fB1; B2;…; BNS

g and a transition rate γjiðtÞ corre-
sponding to a jump from Bi to Bj at time t. Suppose that the

initial probability at state Bi is given by Pi (
PNS

i¼1 Pi ¼ 1

and Pi ≥ 0). Then, Eq. (11) is expressed as

ΞCL ¼
XNS

i¼1

Pi

RiðTÞ
− 1; ð13Þ

where RiðTÞ≡ e−
R

T

0
dt
P

j≠i
γjiðtÞ is the survival probability

in which there is no jump during ½0; T� starting from Bi.

In Eq. (13), the first term is the reciprocal expectation
of the survival probability, which is an experimentally
measurable quantity. For the classical Markov process, a
classical representation of the counting observable G
becomes G ¼ P

i;j;i≠j GjiN ji, where Gji ∈ R is a weight
for the jump from Bi to Bj and N ji is the number of jumps
from Bi to Bj during ½0; T�. Equation (3) with Eq. (13) is
satisfied for arbitrary time-dependent Markov processes
and initial states. When the system activity is greater,RiðTÞ
decreases, resulting in a smaller lower bound. Indeed, for a
short time limit T → 0, ΞCL reduces to ΞCL → ϒ, where ϒ
is the dynamical activity ϒ≡P

i;j;i≠j
R
T
0 PiðtÞγjiðtÞdt.

Here, PiðtÞ is the probability of being Bi at time t. The
dynamical activity quantifies the average number of jumps
during ½0; T�. In classical Markov processes, the dynamical
activity has been reported to constitute the bound in the
TUR [6,9,12] and the QSL [60]. For a steady-state
condition, it has been reported that the fluctuations in
counting observables are bounded from below by 1=ϒ [6].
However, as demonstrated numerically in Ref. [36], in
some cases, Var½G�=hGi2 ≥ 1=ϒ does not hold when the
system is far from a steady state [36].
Quantum walk.—We apply the main result of Eq. (3) to a

discrete-time one-dimensional quantum walk [61,62]. The
quantum walk is defined on the chirality space spanned by
fjRi; jLig and the position space spanned by fjnig, where
n is an integer. Here, we identify the chirality and position
spaces as the principal and environmental systems, respec-
tively [Fig. 1(c)]. One-step evolution of the quantum walk
is performed via the unitary operator U ≡ SðK ⊗ IEÞ,
where IE is an identity operator in E and K and S are
the coin and conditional shift operators, respectively. For
the coin operator, we employ the Hadamard gate defined by

K ¼ 1ffiffiffi
2

p ðjRihRj þ jRihLj þ jLihRj − jLihLjÞ: ð14Þ

The conditional shift operator is given by

S ¼
X
n

½jRihRj⊗ jnþ 1ihnjþ jLihLj⊗ jn− 1ihnj�; ð15Þ

which increases the position when the chirality is jRi and
decreases it when the chirality is jLi. The composite system
after t steps is given by jΨðtÞi ¼ U tjΨð0Þi, where jΨð0Þi is
the initial state jΨð0Þi ¼ jRi ⊗ j0i. By using the combi-
natorics, the amplitudes at step t can be computed
[61,63,64]. At step t ¼ T, the measurement is performed
on the position space, where the measurement operator is
defined by

P
n gðnÞjnihnj. Typically, gðnÞ¼n is employed,

which corresponds to measuring the position after T steps.
When gðnÞ satisfies Eq. (2), that is, gðnÞ is a counting
observable, Eq. (3) holds. Then, we obtain
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Ξ ¼

8>>><
>>>:

22uþ1

�
u
u
2

�
−2

− 1 u ∈ even;

22u−1
�
u − 1
u−1
2

�
−2

− 1 u ∈ odd;

ð16Þ

where u≡ T=2. Note that we consider only even T, because
the amplitudes vanish for odd T. Using Stirling’s approxi-

mation, 22uþ1
� u
u=2

�
−2

∼ πu, indicating that the survival

activity linearly depends on the number of steps. This is in
contrast to Eq. (13) where Ξ exponentially depends on time.
Although the environment confers qualitatively different
information in the continuous measurement [Fig. 1(b)] and
in the quantum walk [Fig. 1(c)], our result can provide the
lower bounds for both systems in a unified way.
We also test the main result numerically for both

classical and quantum systems to verify the bound [36].
Derivation.—We provide a brief derivation of Eq. (3)

(see [36] for details). Our derivation is based on the
quantum Cramér-Rao inequality [30–33], which has been
used to derive the QSL [45–47] and the TUR [28]. Suppose
that the system evolves according to Eq. (1), in which U
and Vm (0 ≤ m ≤ M) are parametrized by a real parameter
θ as UðθÞ and VmðθÞ, respectively. The final state of Sþ E
depends on θ, which is expressed as jΨθðTÞi. For arbitrary
measurement operator ΘE in E, the quantum Cramér-Rao
inequality holds [31]:

Varθ½ΘE�
½∂θhΘEiθ�2

≥
1

FEðθÞ
; ð17Þ

where FEðθÞ is quantum Fisher information [32,33],
hΘEiθ ≡ hΨθðTÞjIS ⊗ ΘEjΨθðTÞi, and Varθ½ΘE� ¼
hΘ2

Eiθ − hΘEi2θ. From Ref. [65], FEðθÞ is bounded from
above by FEðθÞ ≤ CðθÞ, where CðθÞ≡ 4½hψ jH1ðθÞjψi−
hψ jH2ðθÞjψi2� with H1ðθÞ≡P

M
m¼0 ½∂θV

†
mðθÞ�½∂θVmðθÞ�

and H2ðθÞ≡ i
P

M
m¼0 ½∂θV

†
mðθÞ�VmðθÞ.

To derive the main result [Eq. (3)], for 1 ≤ m ≤ M, we
consider the parametrization VmðθÞ≡ eθ=2Vm, where θ ¼
0 recovers the original operator. Because a completeness
relation should be satisfied, V0ðθÞ obeys V†

0ðθÞV0ðθÞ ¼
IS −

P
M
m¼1 V

†
mðθÞVmðθÞ ¼ IS − eθ

P
M
m¼1 V

†
mVm. For any

V0ðθÞ satisfying the completeness relation, there
exists a unitary operator UV such that V0ðθÞ ¼
UV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IS − eθ

P
M
m¼1 V

†
mVm

q
. Substituting VmðθÞ into CðθÞ

(as detailed in Ref. [36]), we find

CðθÞ ¼ hψ jðV†
0V0Þ−1jψi − 1: ð18Þ

We next evaluate hGiθ. Because we have assumed that
gð0Þ ¼ 0 [Eq. (2)], the complicated scaling dependence
of V0ðθÞ on θ can be ignored when computing hGiθ.
Specifically, we obtain hGiθ ¼ eθhGiθ¼0. We evaluate

Eq. (17) at θ ¼ 0 with ΘE ¼ G to obtain the main result
[Eq. (3)]. Although the derivation described here assumes
that the initial state of S is pure (i.e., ρ ¼ jψihψ j), we
can show that Eq. (3) still holds for any initial mixed state ρ
in S [36].
Conclusion.—In this Letter, we have derived a TUR for

open quantum systems. Because our relation holds for a
general open quantum system, we expect the present study
to serve as a basis for obtaining the thermodynamic bound
for several quantum systems, such as quantum computation
and communication.
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