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We derive geometrical bounds on the irreversibility in both quantum and classical Markovian open
systems that satisfy the detailed balance condition. Using information geometry, we prove that irreversible
entropy production is bounded from below by a modified Wasserstein distance between the initial and final
states, thus strengthening the Clausius inequality in the reversible-Markov case. The modified metric can be
regarded as a discrete-state generalization of the Wasserstein metric, which has been used to bound
dissipation in continuous-state Langevin systems. Notably, the derived bounds can be interpreted as the
quantum and classical speed limits, implying that the associated entropy production constrains the
minimum time of transforming a system state. We illustrate the results on several systems and show that a
tighter bound than the Carnot bound for the efficiency of quantum heat engines can be obtained.
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Introduction.—Irreversibility, which is quantified by
entropy production, is a fundamental concept in classical
and quantum thermodynamics [1–3]. Most macroscopic
natural phenomena are irreversible, although their micro-
scopic physical processes are generally time symmetric.
According to the second law of thermodynamics, a system
undergoing an irreversible process generates (on average) a
positive entropy amount ΔStot ≥ 0. This bound can be
saturated only when operations are performed in the
infinite-time quasistatic limit. However, as real processes
must be completed in finite time, they are accompanied by
a certain dissipation. Tightening the lower bound on
entropy production not only deepens our understanding
of how much heat must be dissipated but also provides
insights into quantum technologies such as quantum
computation [4] and quantum heat engines [5].
In recent years, many studies have characterized the

dissipation of thermodynamic processes using information
geometry [6–16], which is the application of techniques
from differential geometry to the manifolds of probability
distributions and density matrices [17]. Reference [18]
showed that entropy production in a closed driven quantum
system is bounded from below by the Bures length between
the final state and the corresponding equilibrium state.
Following a similar approach, Ref. [19] determined a
geometrical upper bound for the equilibration processes
of open quantum systems. As is well known, in classical
systems near equilibrium, irreversible entropy production is
related to the distance between thermodynamic states
[20,21]. Meanwhile, a lower bound on dissipation in terms
of the Wasserstein distance [22] has been defined for
nonequilibrium Markovian systems described by
Langevin equations [23–25]. Information geometry is
useful for deriving other important relations, such as speed

limits [26–29], quantum work fluctuation-dissipation rela-
tions [30], and the efficiency-power trade-off in micro-
scopic heat engines [31].
In this Letter, we enlarge the family of these universal

relations by investigating quantum and classical open
systems that satisfy the detailed balance condition. These
systems obey microscopically reversible Markovian
dynamics [32] and can be modeled as coupled to an
infinite thermal reservoir. Examples include equilibration
processes, which have received considerable interest in
nonequilibrium physics [33–36]. Specifically, we derive
geometrical lower bounds on the entropy production in
reversible Markovian systems described by master equa-
tions. The spaces of quantum states and discrete distribu-
tions are treated as Riemannian manifolds, on which the
time evolution of a system state is described by a smooth
curve. By defining a modifiedWasserstein metric, we prove
that the entropy production is bounded from below by the
square of the geodesic distance between the initial and final
states divided by the process time [cf. Eqs. (3) and (9)]. The
derived bounds strengthen the Clausius inequality of the
second law for reversible Markovian systems. They can
also be regarded as generalizations of the bounds reported
in Refs. [23,25] to the discrete-state quantum and classical
systems. The equality of these bounds is attained only when
the system dynamics follow the shortest paths. Our
modified metric is a quantum generalization of the
Wasserstein metric, which measures the distance between
two distributions and is widely used in optimal transport
problems [22]. Interestingly, the obtained inequalities can
be interpreted as speed limits [37–44], which establish the
trade-off relations between the speed and dissipation cost of
a state transformation. We numerically illustrate the results
on a quantum Otto engine and a classical two-level system.
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Riemannian geometry.—First, we briefly describe some
relevant concepts of Riemannian geometry. Let M be a
smooth Riemannian manifold equipped with a metric gp on
the tangent space at each point p ∈ M. Note that there is an
infinite number of such metrics, as long as the linearity,
symmetry, and positive-definite conditions are met.
Notably, there exists a family of monotone metrics that
are contractive under physical maps [45–47], a represen-
tative of which is the Fisher information metric [48,49].
In the quantum case, M can be the space of density
operators ρ, which are positive (i.e., ρ ≥ 0) and have unit
trace (i.e., trρ ¼ 1). Meanwhile, in classical discrete-state
systems, M can be the collection of discrete distributions
p ¼ ½p1;…; pN �⊤, where pn ≥ 0 and

P
N
n¼1 pn ¼ 1. The

length of a smooth curve fγðtÞg0≤t≤τ on the manifold can be
defined as lðγÞ ≔ R

τ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gγð_γ; _γÞ

p
dt, where the dot denotes a

time derivative. The geodesic distance between two points
can be then defined as the minimum length over all smooth
curves γ connecting those points. Throughout this Letter,
we use the standard notation h·; ·i of the scalar inner
product, i.e., hx; yi ¼ x⊤y for the classical case and
hX; Yi ¼ trfX†Yg for the quantum case.
Bounds in Markovian quantum systems.—We first con-

sider an open quantum system that is weakly coupled to a
heat bath at the inverse temperature β. The time evolution
of the density operator ρðtÞ of this system is described by
this Lindblad master equation [50,51]:

_ρ ¼ LðρÞ ≔ −i½HðtÞ; ρ� þDðρÞ; ð1Þ
where L is the Lindblad operator, HðtÞ is the Hamiltonian,
and DðρÞ is the dissipator given by DðρÞ ≔P

μ;ω αμðωÞ½2LμðωÞρL†
μðωÞ − fL†

μðωÞLμðωÞ; ρg�. Here,
f·; ·g is the anticommutator and LμðωÞ is a jump operator
that satisfies L†

μðωÞ ¼ Lμð−ωÞ and ½LμðωÞ; H� ¼ ωLμðωÞ.
Note that jump operators and coupling coefficients can be
time dependent, but we omit the time notation for sim-
plicity. We also assume that the detailed balance condition
αμðωÞ ¼ eβωαμð−ωÞ is satisfied and the system is ergodic
[52] (i.e., ½LμðωÞ; X� ¼ 0 for all μ, ω if and only if X is
proportional to the identity operator). These assumptions
are sufficient conditions for the Gibbs state ρeqðtÞ ≔
e−βHðtÞ=ZβðtÞ to be the instantaneous stationary state of
the Lindblad master equation, i.e., L½ρeqðtÞ� ¼ 0 [53,54],
where ZβðtÞ is the partition function.
The entropy growth of the open system during time

period τ is ΔStot ¼
R
τ
0 σtotðtÞdt, where σtotðtÞ ¼ _Sþ β _Q

is the entropy production rate [55]. Here, _S ¼
−trf_ρðtÞ ln ρðtÞg denotes the von Neumann entropy
flux of the system and _Q ¼ −trfHðtÞ_ρðtÞg denotes the
heat flux dissipated from the system to the bath. The
entropy production rate can be rewritten as σtotðtÞ¼
−hlnρðtÞ− lnρeqðtÞ; _ρðtÞi¼−ðd=dtÞS½ρðtÞjjρeqðtÞ�, where
Sðρ1jjρ2Þ ≔ trfρ1ðln ρ1 − ln ρ2Þg is the relative entropy
of ρ1 with respect to ρ2, and the time derivative does

not act on ρeqðtÞ. σtotðtÞ is non-negative because the relative
entropy is monotonic under completely positive trace-
preserving maps; thereby, one can obtain the Clausius
inequality ΔStot ≥ 0.
We now construct an operator Kρ, and alternatively

express the Lindblad master equation [Eq. (1)] in the
form _ρ ¼ Kρð− ln ρþ ln ρeqÞ [56]. For an arbitrary
density operator ρ, we define a tilted operator
½ρ�θðXÞ ≔ e−θ=2

R
1
0 e

sθρsXρ1−sds, where θ is a real
number. Using this operator, Kρ can be explicitly con-
structed as KρðψÞ ≔ iβ−1½ψ ; ρ� þOρðψÞ. Here, OρðψÞ ≔P

μ;ω e
−βω=2αμðωÞ½LμðωÞ; ½ρ�βωð½L†

μðωÞ;ψ �Þ� is a self-
adjoint positive operator, which can be interpreted as a
quantum analog of the Onsager matrix. For an arbitrary
smooth curve fγðtÞg0≤t≤τ, there exists a unique vector field
of traceless self-adjoint operators fνðtÞg0≤t≤τ such that
_γðtÞ ¼ Kγ½νðtÞ� for all t. Exploiting this representation, one
can define a metric g under which the gradient flow of the
instantaneous relative entropy equals the flow associated
with the system dynamics [58–61]. Specifically, we define
the metric gγð_γ; _γÞ ¼ hν;KγðνÞi, which is always non-
negative because hν;KγðνÞi ¼ hν;OγðνÞi ≥ 0. Although
the operator νðtÞ is implicitly obtained from _γðtÞ, it can
be regarded as the generalized thermodynamic force, and
gγð_γ; _γÞ is the quantum dissipation function [62]. This can
be clarified as considering the path generated by the system
dynamics, i.e., _ρ ¼ KρðϕÞ and gρð_ρ; _ρÞ ¼ σtotðtÞ, where
ϕ ¼ −ðln ρ − ln ρeqÞ þ c is a traceless self-adjoint operator.
In addition to the thermodynamic length lðγÞ, the thermo-
dynamic divergence of a path, defined as [20]

lqðγÞ2 ≔ τ

Z
τ

0

gγð_γ; _γÞdt; ð2Þ

is a measure of the dissipation along the path. Note that by
the Cauchy-Schwarz inequality, lqðγÞ ≥ lðγÞ. A modified
Wasserstein distance between two states ρ0 and ρτ can be
defined as Wqðρ0; ρτÞ ≔ infγflqðγÞg, where the infimum
is taken over smooth curves with end points ρ0 and ρτ. For
relaxation processes, Wq is exactly the geodesic distance
induced by the defined metric [63]. It has been shown that a
clear-cut definition of the quantumWasserstein distance, by
the direct generalization of the classical one, is not
achievable [65]. Our generalization here is based on the
Benamou-Brenier flow formulation of the original L2

Wasserstein [60,61,66]. Other generalized metrics based
on quantum couplings [65,67,68] and the Kantorovich-
Rubinstein duality [69] have also been proposed in the
literature. From the definition ofWq, the first main result is
a geometrical lower bound of the entropy production:

ΔStot ≥
Wq½ρð0Þ; ρðτÞ�2

τ
: ð3Þ

The inequality Eq. (3) indicates that the irreversible entropy
production is lower bounded by the distance between the
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initial and final states. This bound is stronger than the
conventional second law of thermodynamics; it can also be
interpreted as a quantum speed limit, as it limits the time
required to transform the system state. The limit is
governed by dissipation and the geometrical distance
between states. To generalize the result to the infinite-
dimensional Hilbert space, the existence and the construc-
tion of the operator νðtÞ in the definition of the metric
must be clarified. Since the distanceWq is usually difficult
to compute explicitly, we provide a lower bound of Wq

in terms of the tracelike distance dTðρ0; ρτÞ ¼P
N
n¼1 jan − bnj, where fang and fbng are increasing

eigenvalues of ρ0 and ρτ, respectively. Specifically, we
prove that Wqðρ0; ρτÞ2 ≥ dTðρ0; ρτÞ2=4AT [56], where
AT ≔ τ−1

R
τ
0

P
μ;ω αμðωÞkLμðωÞk2∞dt characterizes the

timescale of the quantum system and kXk∞ denotes the
spectral norm of the operator X. Note that this lower bound
on Wq is not invariant under the well-known unitary
transformation of jump operators because the conditions
of jump operators uniquely determine the parameterization
of the dynamics. Consequently, the entropy production is
also bounded from below by the tracelike distance between
the initial and final states, given by

ΔStot ≥
dT ½ρð0Þ; ρðτÞ�2

4τAT
: ð4Þ

The Hamiltonian and jump operators of a system must be
time independent in order to equilibrate with the environ-
ment and reach a steady state. Thus, during equilibration,
the entropy production can be bounded by the distance
dEðρ0; ρτÞ ¼ jtrfHðρ0 − ρτÞgj of the average energy
change [56],

ΔStot ≥
dE½ρð0Þ; ρðτÞ�2

τAE
; ð5Þ

where AE ≔
P

μ;ω αμðωÞω2kLμðωÞk2∞. A tighter bound in
terms of the square of the heat current to the reservoir [70]
and another bound in terms of the change in entropy of the
system can also be obtained [56]. However, these bounds
are not tight in the zero-temperature limit compared to the
bound reported in Ref. [71]. The inequalities Eq. (4) and
Eq. (5) provide lower bounds not only on the entropy
production but also on the equilibration time, which is an
essential quantity in quantum-state preparation [72] and
which aids our understanding of thermalization [33]. In
applications, the equilibration time can be approximated
without solving the Lindblad master equation, which may
be time consuming in the weak coupling limit. The
dissipation-current trade-off relation [73], which unveils
the role of coherence between energy eigenstates in
realizing a dissipationless heat current, can also be derived
using our geometrical approach [56].
The system becomes classical when the initial density

matrix has no coherence in the energy eigenbasis of the

Hamiltonian. In what follows, we present the analysis for
classical systems.
Bounds in Markovian classical systems.—Next, we

consider a discrete-state system in contact with a heat bath
at the inverse temperature β. During a time period τ,
stochastic transitions between the states are induced by
interactions with the heat bath. The dynamics obey a time-
continuous Markov jump process and are described by this
master equation:

_pnðtÞ ¼
X
mð≠nÞ

½RnmðtÞpmðtÞ − RmnðtÞpnðtÞ�; ð6Þ

where pnðtÞ is the probability of finding the system in state
n at time t and RmnðtÞ is the (possibly time dependent)
transition rate from state n to state m (1 ≤ n ≠ m ≤ N). We
assume an irreducible system in which the transition rates
satisfy the detailed balance condition RnmðtÞe−βEmðtÞ ¼
RmnðtÞe−βEnðtÞ for all m ≠ n, where EnðtÞ is the instanta-
neous energy of state n at time t. Herein, we define the
instantaneous equilibrium state peqðtÞ as peq

n ðtÞ ∝ e−βEnðtÞ.
Within the stochastic thermodynamics framework [1], the

irreversible entropy production ΔStot is quantified by
the change in the system’s Shannon entropy and the heat
flow dissipated into the environment. Specifically,
ΔStot ¼

R
τ
0 σtotðtÞdt, where σtotðtÞ ¼ σðtÞ þ σMðtÞ is the

total entropy production rate. The terms σðtÞ ¼P
m;n Rmnpn lnðpn=pmÞ and σMðtÞ ¼

P
m;n Rmnpn×

lnðRmn=RnmÞ define the entropy production rates of the
system and medium, respectively. Under the detailed
balance condition, the entropy production rate can be
explicitly calculated as σtotðtÞ ¼ hf ðtÞ; _pðtÞi ¼ −ðd=dtÞ
D½pðtÞjjpeqðtÞ�, where f ðtÞ ≔ −∇pD½pðtÞjjpeqðtÞ� is a vector
of thermodynamic forces, and the time derivative does not
act on peqðtÞ. Here, DðpjjqÞ ¼ P

n pn lnðpn=qnÞ is the
relative entropy between the distributions p and q, and∇p ≔
½∂p1

;…; ∂pN
�⊤ denotes the gradient with respect to p. The

second law of thermodynamics, ΔStot ≥ 0, is affirmed from
the positivity of the entropy production rate σtotðtÞ.
The master equation [Eq. (6)] can be alternatively written

as _pðtÞ ¼ KpðtÞf ðtÞ [56], where KpðtÞ is a symmetric
positive semidefinite matrix given by

KpðtÞ ≔
X
n<m

RnmðtÞpeq
m ðtÞΦ

�
pnðtÞ
peq
n ðtÞ ;

pmðtÞ
peq
m ðtÞ

�
Enm: ð7Þ

Here, Φðx; yÞ ¼ ðx − yÞ=½lnðxÞ − lnðyÞ� is the logarithmic
mean of x; y > 0, and Enm ¼ ½eij� ∈ RN×N is a matrix with
enn ¼ emm ¼ 1, enm ¼ emn ¼ −1, and zeros in all other
elements. The symmetric matrix Kp is actually the Onsager
matrix [62], which linearly relates the thermodynamic
forces to the probability currents. For an arbitrary smooth
curve fγðtÞg0≤t≤τ, there exists a unique vector field
fvðtÞg0≤t≤τ such that _γðtÞ ¼ KγðtÞvðtÞ and h1; vðtÞi ¼ 0,
where 1 ≔ ½1;…; 1�⊤ is an all-ones vector. We can thus
define the Riemannian metric gγð_γ; _γÞ ¼ hv; Kγvi, which is
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always non-negative. Using this metric, the thermodynamic
divergence of a curve can be defined as

lcðγÞ2 ≔ τ

Z
τ

0

gγð_γ; _γÞdt: ð8Þ

The modified Wasserstein distance between two points p0
and pτ is then defined as Wcðp0; pτÞ ≔ infγflcðγÞg, where
the infimum is taken over all smooth curves connecting p0
and pτ on the manifold. Notably, this distance is bounded
from below by the total variation distance [56]. It is worth
noting that the defined metric is not equivalent to the
traditional discrete version of the classical Wasserstein
metric. In practice, Wc can be numerically calculated by
thegeodesic equation [56],which computes the shortest path
between two points. Defining hðtÞ ≔ f ðtÞ − N−1h1; f ðtÞi1,
one observes that _pðtÞ ¼ KpðtÞhðtÞ and h1; hðtÞi ¼ 0. As
σtotðtÞ ¼ hhðtÞ; KpðtÞhðtÞi, τΔStot is exactly the thermody-
namic divergence of the path described by the system
dynamics. As the second main result, we obtain the follow-
ing bound:

ΔStot ≥
Wc½pð0Þ; pðτÞ�2

τ
: ð9Þ

The inequality Eq. (9) provides a stronger bound than the
Clausius inequality of the second law and is valid as long as
the transition rates satisfy the detailed balance condition.
Geometrically, Eq. (9) can be considered as a discrete-state
generalization of the relation between dissipation and the
Wasserstein distance, which has been studied in continuous-
state Markovian dynamics governed by Langevin equations
[23,25]. Concretely, Eq. (21) in Ref. [23] and Eq. (2) in
Ref. [25] are referred to as the continuum analogs of Eq. (9).
Our generalization newly and appropriately connects these
thermodynamic andgeometric quantities in thediscrete case.
Therefore, it is applicable to the many discrete physical
phenomena in biological and quantum physics.
Examples.—First, we illustrate the bounds derived in

Eqs. (4) and (5) on a quantum Otto heat engine [74–76],
which consists of a two-level atom with the Hamiltonian
HðtÞ ¼ ωðtÞσz=2. This system is alternatively coupled to
two heat baths at different inverse temperatures [one hot,
one cold, βk ¼ 1=Tkðk ¼ h; cÞ] and is cyclically operated
through four steps, as demonstrated in Fig. 1(a). During
adiabatic expansion (compression), the isolated system
unitarily evolves during time τa, and its frequency changes
from ωh → ωc (ωc → ωh). The dynamics in each isochoric
process k ¼ h, c are described by this Lindblad master
equation [55]:

_ρ ¼ −i½Hk; ρ� þ αkn̄ðωkÞð2σþρσ− − fσ−σþ; ρgÞ
þ αk½n̄ðωkÞ þ 1�ð2σ−ρσþ − fσþσ−; ρgÞ; ð10Þ

where the frequency is fixed at ωk, σ� ¼ ðσx � iσyÞ=2, αk
is a positive damping rate, and n̄ðωkÞ ¼ ðeβkωk − 1Þ−1 is the
Planck distribution. The density operator ρ in this thermal-
ization process is analytically solvable [77], and the total

entropy production can be explicitly evaluated as
ΔSktot ¼ S½ρð0Þjjρeq� − S½ρðτkÞjjρeq�, where τk denotes the
process time. Equations (4) and (5) constrain ΔSktot within
the distances dT and dE, as numerically verified in
Fig. 1(b). Note that unlike the classical case [36], ΔSktot
in generic thermalization processes is not bounded by the
relative entropy S½ρð0ÞjjρðτkÞ� [56].
The total entropy production in each cycle is the sum of

those in the hot and cold isochoric processes, that is,
ΔStot ¼ ΔShtot þ ΔSctot. Assuming a stationary-state system,
let Qh and Qc denote the heat taken from the hot bath and
the heat transferred to the cold bath, respectively. From the
inequality ΔStot ¼ βhQh − βcQc ≥ 0 imposed by the
second law, one can prove that the engine efficiency
cannot exceed the Carnot efficiency η ≔ 1 −Qc=Qh ≤
1 − βh=βc ≕ ηC. From the derived bounds, we can tighten
the bound on the efficiency of the quantum Otto engine.
Applying Eqs. (4) and (5) to isochoric processes,
one readily obtains βhQh − βcQc ≥ g, where g≔
maxfdTðρ1;ρ4Þ2=4τhAh

T;dEðρ1;ρ4Þ2=τhAh
EgþmaxfdTðρ2;

ρ3Þ2=4τcAc
T;dEðρ2;ρ3Þ2=τcAc

Eg. Here, ρi denotes the den-
sity operator at the beginning of process i ð1 ≤ i ≤ 4Þ,
Ak

T ≔ αk½2n̄ðωkÞ þ 1�, and Ak
E ≔ ω2

kαk½2n̄ðωkÞ þ 1� for
each k ¼ h, c. Consequently, the efficiency can be bounded
from above as η ≤ ηC − g=βcQh ≕ ηG. This bound is

(1) C
old isochore

(2)

(3)

H
ot

 is
oc

ho
re

(4)

Adiabatic expansion

Adiabatic compression Time

Ratio Time

(a) (b)

(d)(c)

FIG. 1. Numerical verification. (a) Quantum Otto engine: a
two-level atom undergoes two isochoric and two adiabatic
processes. (b) Thermalization process of the two-level atom.
Plotted are ΔStot (solid line), d2T=4τAT (dashed line), d2E=τAE
(dash-dotted line), and S½ρð0ÞjjρðτÞ� (dotted line). Parameters
are βk ¼ 1, ωk ¼ 1, αk ¼ 10−3, and ρð0Þ ¼ ðI2 þ 0.1σx−
0.5σy þ 0.8σzÞ=2. (c) Engine efficiency η (solid line), Carnot
efficiency ηC (dash-dotted line), and the derived efficiency bound
ηG (dashed line), as functions of the cold-to-hot ratio of operating
frequency. The inset plots the power output P of the engine over
the same frequency-ratio range. Parameters are βc ¼ 1, βh ¼ 0.1,
αh ¼ αc ¼ 10−3, and τa ¼ τc ¼ τh ¼ 1. (d) Classical two-level
system. Plotted are ΔStot (solid line) and Wc½pð0Þ; pðτÞ�2=τ
(dashed line). Parameters are fixed as a ¼ 0.7, b ¼ 0.4.
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numerically verified in Fig. 1(c), which plots the efficiency
against the ωc=ωh ratio.
Next, we numerically verify the bound derived in Eq. (9)

in a time-driven two-level classical system. The instanta-
neous energies of states 1 and 2 are E1ðtÞ ¼ β−1 lnf½1 −
aþ bðtþ 1Þ=τ�=ða − bt=τÞg and E2ðtÞ ¼ 0, respectively,
where 0 < b < a < 1 are constants. Their respective tran-
sition rates are R12ðtÞ ¼ 1, R21ðtÞ ¼ eβE1ðtÞ. The probability
distribution and entropy production can be analytically
calculated. The entropy production and modified
Wasserstein distance are plotted as functions of time τ in
Fig. 1(d). The entropy production at all times was tightly
bounded from below by the distance Wc. This result
numerically verifies Eq. (9). As another example, the
thermalization process of a three-level system is presented
in Ref. [56].
Conclusions.—In this Letter, we derived the geometrical

bounds of irreversibility in both quantum and classical open
systems, thus strengthening the Clausius inequality of the
second law of thermodynamics. Furthermore, the study
results elucidate that, beyond the linear response regime,
the entropy production can be geometrically characterized.
This finding sheds light on the problem of minimizing
dissipation in discrete-state systems by methods of optimal
control [23]. Interpreting the bounds as speed limits shows
that the state-transformation speed is constrained by dis-
sipation in quantum systems. By investigating the infor-
mation-geometric structure underlying the system
dynamics, we lay the foundations for obtaining useful
thermodynamic relations. Exploring analogous bounds in
generic systems, which violate the detailed balance con-
dition, and for higher cumulants of dissipation [78,79]
would be promising research directions.
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