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This Letter investigates what forms of cellular dynamic self-organization are caused through intercellular
contact communication based on a theoretical model in which migrating cells perform contact following
and contact inhibition and attraction of locomotion. Tuning those strengths causes varieties of dynamic
patterns. This further includes a novel form of collective migration, snakelike dynamic assembly.
Scrutinizing this pattern reveals that cells in this state can accurately respond to an external directional
cue but have no spontaneous global polar order.
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The emergence of dynamics can be a versatile concept to
understand how living systems acquire complex structures
and functions. Cells, the fundamental elements of living
systems, often move cooperatively and spontaneously
organize their dynamic patterns. Such dynamic self-organi-
zation (DSO) is accompanied by cooperative movement of
cells through intercellular communication, as revealed for
neural crest cells in Xenopus and chicken embryos [1–6]
and the cellular slime mold Dictyostelium discoideum
(Dicty) [7–12], and can influence functional biological
processes. For example, collective cell migration is
relevant for cells to respond accurately to environmental
factors, perform mechanically efficient dynamics, and
achieve proper morphogenesis in multicellular organisms
[4–6,13–18]. In light of this, various theoretical models
have been proposed based on different frameworks
to simulate cooperative migration and investigate their
mechanisms and functional roles [19], e.g., agent-based
[6,20–22], semimechanistic [23,24], phase field [25],
cellular Potts [26], and vertex and Voronoi tessellation
[27–29] frameworks.
Over the past decade, biologists have accumulated

knowledge on the nature and role of contact communica-
tion between migrating cells, such as so-called contact
following (CF) and contact inhibition and attraction of
locomotion (CIL and CAL, respectively). In CF, when a
cell contacts another cell, the cell at the back chases the cell
at the front but not vice versa [Fig. 1(a)]. CF has been
observed in several cells [9,12,30] and revealed to be
involved in various types of DSO [9,12]. In CIL, when two
cells come in contact, they exchange information and
modulate their polarities to avoid overlap [Fig. 1(b)]
[2,5,6,13,14]. For instance, Xenopus neural crest cells
undergoing CIL are seen to scatter [2]. CIL is involved
in coordinated migration and directional migration in
response to external cues [5,6]. On the other hand, in
CAL, contacting cells are mutually attracted [Fig. 1(b)],

which may contribute to their coordinated behaviors [3].
Thus, contact-mediated mechanisms can play versatile
roles in cellular DSO. However, there is a lack of a unified
model capable of achieving various types of cellular
DSO only through contact communication. To thoroughly
investigate the mechanisms underlying cellular DSO
and its potential biological functions, such a model is
indispensable.
In this Letter, I propose a theoretical model of cells

migrating on a substrate in two dimensions which generates
a variety of DSO patterns solely through cellular contact
interactions, based on the framework for collective motion
of polar self-propelled elements. These elements move
around according to their intrinsic polarity by consump-
tion of input energy [31]. Their collective motion has
been intensively investigated over the past decades, which
has revealed that interaction between motile elements are
significant factors to control collective behaviors [31–48].
Here, cells are ideally regarded as self-propelled disk-
shaped particles with volume exclusion (VE), and local
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FIG. 1. Schematics of the types of intercellular communication
in the model. (a) Contact following. The strength is denoted by
αCF. (b) Contact inhibition and attraction of locomotion (left and
right, respectively). The strength is denoted by αCIL. In each, the
top and bottom subfigures describe the cases for cell migration
and idealized situations, respectively. Green arrows indicate
intrinsic polarities of cells, qj (for the jth cell).
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pairs of particles modulate their intrinsic polarities through
contact interactions. The major focus of this Letter is to
highlight the significance of contact communication in
achieving a myriad of DSO patterns.
We approximate each migrating cell as a self-propelled

particle in two dimensions [49,50]. We model N cells by
the equation of motion

dxj
dt

¼ v0qj þ Jvj ð1Þ

and polarity angle dynamics

dθj
dt

¼ Jqj · qj;⊥ þ f j · qj;⊥ þ ξj ð2Þ

of each jth cell (j ¼ 1; 2;…; N) with its center position
xjðtÞ at time t, intrinsic polarity qjðtÞ≡ ½cos θjðtÞ;
sin θjðtÞ�, and qj;⊥ ¼ ð− sin θj; cos θjÞ. Equation (1)
assumes overdamped dynamics, and v0 is the
spontaneous migration speed. Assuming each cell as a
soft disk with fixed radius r, VE is given by Jvj ¼
−β

P
j0ðn:jÞ ðrjΔxj0jj−1 − 1Þ dΔxj0j, where Δxj0j ¼ xj0 − xj

and dΔxj0j ¼ Δxj0j=jΔxj0jj and the summation
P

j0ðn:jÞ runs
for all neighbors of the jth cell defined by jΔxj0jj < r
(Fig. S1 in Supplemental Material [51]). Jqj
represents intercellular communication. ξjðtÞ is a white
Gaussian noise satisfying hξji ¼ 0 and hξiðtÞξjðt0Þi ¼
2Dδijδðt − t0Þ, and D is the noise dispersion. We
apply external directional bias f j at the end, where we
set a constant vector f j ¼ ð0; AÞ among all cells. (See
Supplemental Material for more model details [51].)
This model is highly idealized, but still the models based
on the same framework captured several features of cell
migration [12,22,49].
In this Letter, Jqj consists of CF and CIL as

Jqj ¼ JCFj þ JCILj, where

JCFj ¼ αCF
X

j0ðn:jÞ

1þ dΔxj0j ·cqj0
2

dΔxj0j ð3Þ

and

JCILj ¼ −αCIL
X

j0ðn:jÞ
ðrjΔxj0jj−1 − 1Þ dΔxj0j ð4Þ

(Fig. S1 [51]) with the strengths αCF (≥ 0) and αCIL (> 0 for
CIL; < 0 for CAL; ¼ 0 otherwise), respectively. To get
initial insights, the interaction terms presented here are
compared with those discussed in earlier literature. CF is a
nonreciprocal local interaction with forward-backward
asymmetry [Fig. 1(a)], similar to the chasing interaction
assumed in the escape-and-pursuit and cognitive flocking

models [35,39,47]. CIL can be regarded as a short-range
repulsion acting on the intrinsic polarity q [Fig. 1(b)],
which is similar to local cognitive repulsion in the animal
group model [35]. CIL combined with VE can lead to pair
behavior of self-propelled particles analogous to inelastic
collision, which effectively causes alignment [22,54–56].
Here, CAL is treated simply as the negative direction of
CIL [Fig. 1(b)] and can be regarded as a short-range
attraction on q. Referring to earlier work by Grossmann,
Schimansky-Geier, and Romanczuk [44], which investi-
gated the consequences of short-range selective attraction
and repulsion, the model presented here is also expected to
exhibit polar traveling bands and homogeneous polar
flocking for αCIL > 0 (repulsion) whereas aggregation
for αCIL < 0 (attraction).
We numerically simulate Eqs. (1)–(4) in a 2D regular

square with area W and the periodic boundary condition.
We formulate dimensionless equations using characteristic
length X ≡ r and time T ≡ r=v0 [22]. For this, we can
simply put r ¼ 1 and v0 ¼ 1. We apply the Heun’s method
with the increment time step dt ¼ 0.01 up to t ¼ 6400
unless mentioned specifically. The total number of cells N
is given for each simulation, and W ¼ N=ρ. Throughout
this Letter, we use D ¼ 0.1, which is comparable with a
single-cell migration data [49,51]. 1=D corresponds to the
persistence time of the migrating direction of a solitary cell
[49]. For simplicity, we set ρ ¼ 1.0 and β ¼ 1.0. (The case
for β ¼ 0 is discussed in Supplemental Material [51].) Note
that, with these values of D and ρ, motility-induced phase
separation [42,43] does not occur and a homogeneous
disorder state is observed for αCF ¼ αCIL ¼ 0 [22].
By varying αCF and αCIL, this model undergoes various

DSO patterns as shown in Fig. 2(a) for A ¼ 0.0 and
N ¼ 10000. Figures 2(b)–2(d) show the patterns observed
in the absence of CIL (αCIL ¼ 0.0). When αCF > 0.8,
cells form rings [Fig. 2(b) and Supplemental Material
[51] ] similarly to Refs. [35,47]. For smaller αCF as
0.8 ≥ αCF ≥ 0.5, ring formation fails [Fig. 2(c)]. For
even smaller αCF, 0.5 ≥ αCF > 0.3, we find dynamic
assemblies with thick snakelike shapes, which keep repeat-
ing to gather and scatter [Fig. 2(d) and Movie S1 [51] ]. We
call this pattern snakelike dynamic assembly (SDA). All
these patterns are made of stripe-shaped clusters, which
may be regarded as the analogy for the presence of VE of
the wormlike pattern in a cognitive flocking model [47]. In
the stripe, cell polarities are directed nearly toward the
stripe’s center line but spontaneously tilted to either
direction parallel to the stripe so that the cluster moves
in that direction [Fig. 2(e)].
For αCIL > 0.0, polarly ordered patterns appear. CF

decreases the threshold αCIL to form the traveling band
[Fig. 2(f)]. Similar CF-assisted traveling band formation
was investigated in our previous work for the model with a
different cell-cell interaction [12]. Larger αCIL turns trav-
eling bands into the homogeneous order [Fig. 2(g)]. These
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traveling bands may emerge through microphase separation
like the Vicsek model [57]. Indeed, multiple bands are
observed for N ¼ 80000 (Fig. S4 [51]).
CAL (αCIL < 0.0) induces aggregation patterns as I

reported previously [22] [Fig. 2(h) and Movie S2 [51] ].
When we further add CF for αCIL < 0.0, aggregations
become motile and fluctuating [Fig. 2(i) and Movie S3

[51] ]. With further higher αCF, the motile trajectory of an
aggregation draws rotation [Fig. 2(j) and Movie S4 [51] ].
This set of bifurcations resembles those of a single
deformable self-propelled particle [40,58,59].
Here, N dependency is briefly clarified, since it

is generally well recognized in collective motion
[36,38,60]. For the larger system N ¼ 80000, spirals
coexist with stable rings. Some spirals were apparently
stable during the simulation time [Fig. 2(b), inset] (a similar
pattern was also obtained by the pursuit model [39]), while
the others intermittently move. See Movie S5 [51], in
which all these patterns coexist in a single simulation. Also,
ring-formation failure in Fig. 2(c) was not observed
for αCF ¼ 0.6, 0.7, 0.8 and αCIL ¼ 0 with N ¼ 80000.
Collectively, the distinction between these apparent three
phases may stem from the finite N effect. Furthermore,
three different dynamics of aggregates in Figs. 2(h)–2(j)
can depend on the cell number in each aggregate as well as
parameter values (Supplemental Material [51]).
Among these varieties, SDA is a novel DSO pattern.

We now scrutinize its nature with larger N, up to 80000
[Fig. 3(a) and Movies S7 and S8 [51] ]. The mechanism
generating SDA can be understood by the competition
between CF and CIL: While CIL may enhance the
diffusion perpendicular to the traveling direction of sur-
rounding local cell population, CF may hinder it, which
prevents band formation and leads to SDA. Indeed, this
mechanism is reflected in Fig. 3(b) with the mean square

displacement in the transverse direction, tMSDðΔtÞ≡
j RΔt

0 dt0V̂n:jðt0 þ t0Þ × vjðt0 þ t0Þj2 with a lag time Δt.
Here, V̂n:jðtÞ is the unit vector along the average migration
direction of neighbors (cells within the distance r) around
the jth cell, × is the cross product, and the average ·̄ runs for
cells j locating in the dense region (defined such that the
cell number density within the distance r around the jth cell
is > 1.50) and time t0. For large αCIL yielding traveling
bands, tMSD ∝ ðΔtÞ1 between Δt ∼ 10 and several
hundred like the normal diffusion. When αCF is decreased
and exceeds the transition threshold to SDA, tMSDðΔtÞ
exhibits subdiffusive behavior for this intermediate Δt.
To investigate whether SDA has global polar order (PO),

we measured the PO parameter R ¼ jPN
j¼1 qj=Nj

[Fig. 3(c)]. R within the SDA state (0.28 ≤ αCF ≤ 0.56
for αCIL ¼ 0.0) decreases for increasing N [Fig. 3(d)],
suggesting that R can vanish in the large N limit. To further
confirm this, we measured dependency of the local PO Rl
on the size l of each region of interest (ROI). Indeed, Rl
decreases, even though it can be quite slow, for increasing l
[Fig. 3(e) and the inset]. Altogether, this SDA state is
qualitatively distinct from the other states including dis-
order and traveling band states.
Finally, to seek possible functional relevance of various

DSO patterns, we ask how they influence collective direc-
tional migration, e.g., due to external gradients (chemotaxis).

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

FIG. 2. Phase diagram for β ¼ 1.0, D ¼ 0.1, A ¼ 0.0, ρ ¼ 1.0,
and N ¼ 10000. (a) Fraction of space covered by high-density
regions [51], against αCF and αCIL. (See Fig. S2 for the heat maps
of other quantities [51].) Curves indicate the phase boundaries
[51]. Broken curves specifically indicate the apparent phase
boundaries expected to disappear for the large N and long-time
limits. (b)–(d),(f)–(j) Snapshots. Each small colored arrow
represents the location and polarity direction of each cell, and
the color indicates the polarity direction corresponding to the
color wheel for better visibility. Large black arrows indicate the
apparent motile directions of clusters. The observed patterns
include (b) ring and spiral, (c) ring-formation failure, (d) SDA,
(f) polar traveling band, (g) homogeneous polar flock, (h) static
aggregate, (i) motile aggregate, and (j) rotating aggregate. The
values of αCF and αCIL for each snapshot are indicated in (a) by
the marks. Figure S3 displays more snapshots [51]. (e) Schematic
showing directions of each cell polarity and stripe-shaped
cluster’s motion (green and large black arrows, respectively) in
(b)–(d). Orange line describes the stripe’s center line.
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We apply external directional bias A ¼ 0.01 and investigate
the accuracy of directional responses of cells [Figs. 4(a)–
4(c)], by quantifying CI≡ ð1=NÞPN

j cosðθvj Þ, called the
chemotaxis index (CI), with the angle θvj of the jth cell’s
motion direction around the bias direction. This A’s value is
small enough such that, if cells have no cell communications,
they hardly respond to the bias (CI < 0.1) [Fig. 4(d), green
curve]. Even under such faint bias, cells undergo accurate
directional motion in the SDA state, 0.25 ≤ αCF ≤ 0.5
(red curve), like in traveling bands (purple curve)
[Figs. 4(a) and 4(d)]. Strikingly, unlike the global PO, CI
sustains for larger cell numbers, N ¼ 80000 [Fig. 4(e)]. The
other states lacking global PO bring no robust improvement

of directional accuracy [Figs. 4(a), 4(c), and 4(d), blue
curve]. In Fig. 4(c), clusters almost randomly move around
much more slowly than solitary cells, and that is why CI
largely fluctuates across zero. In contrast, in Fig. 4(b), small
SDAs travel accurately toward the bias (Movie S9 [51]).
This might be due to weak correlations of motile directions
across small SDAs, which is indeed seen even when A ¼ 0.0
in Movie S7 [51].
Through the model I proposed in this Letter, I have

shown how various DSO patterns are induced through
contact interactions of varying strengths, including
CF, CIL, and CAL (Figs. 1 and 2). The obtained patterns
cover several types of DSO observed in cells. (See
Supplemental Material for examples for Dicty cells
[51].) However, in living cells, nonlocal communication
through secreted chemicals, such as autochemotactic
signaling of Dicty cells [7] and neural crest cells [6], also
plays some role, which is not incorporated in the presented
model. Nevertheless, underestimation of contact-mediated

(a)

(b)

(d)

(c)

(e)

FIG. 4. Directional migration under external directional bias
A ¼ 0.01 for β ¼ 1.0, D ¼ 0.1, and ρ ¼ 1.0 with N ¼ 10000 for
(a)–(d). (a) CI for various αCF and αCIL. Curves indicate the phase
boundaries determined for A ¼ 0.0 [Fig. 2(a)]. (b),(c) Snapshots.
The parameter values are indicated in (a). Small colored and
black arrows are defined in the Fig. 2 and 3 legends, respectively.
Huge red arrows indicate the bias direction. Figure S5 displays
more snapshots [51]. (d) CI calculated in each frame for various
αCF and αCIL. (e) CI for αCIL ¼ 0.0 for various αCF and N. Marks
and error bars indicate means and standard deviations over time,
respectively.

(a)

(b) (c)

(d) (e)

FIG. 3. SDA, for β ¼ 1.0, D ¼ 0.1, and ρ ¼ 1.0. N ¼ 80000
except for (d). (a) Snapshots for αCF ¼ 0.5 and αCIL ¼ 0.0. Small
colored arrows are defined in the Fig. 2 legend. Black arrows
indicate the velocity vectors of 80 representative cells. See also
Movie S7 [51]. (b) tMSDðΔtÞ for αCF ¼ 0.5 and various αCIL.
Main: ˜tMSD≡ tMSDðΔtÞ=tMSDð1Þ divided by Δt. Inset: tMSD
itself. For (b), simulations were performed up to t ¼ 9600.
(c) Global PO R against αCIL and αCF. Figure S4 displays the
corresponding snapshots [51]. (d) R (marks) and median cell
speed V (curves) for αCIL ¼ 0.0 for various αCF and N. (e) ROI
linear size l dependence of local PO Rl (i.e., PO parameter
calculated in rectangular ROIs with size l × l). Inset: logðlÞ
dependence of Rl for the SDA state. Thick line segments are eye
guides for power-law slopes. Error bars indicate standard devia-
tions over time for (d) and time and ROIs for (e).
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mechanisms should be avoided when a certain DSO is
desired to be explained. The model presented here
demonstrates possibilities of contact communications to
explain DSO varieties without introducing extra fields or
nonlocal mechanisms.
Furthermore, this model can predict what patterns can

emerge from contact interaction. As a new finding, I have
shown that cells with CF can form SDA, which has polar
order locally but no global order (Fig. 3). Even without
global order, cells in the SDA state can achieve accurate
directional motion toward a faint external cue (Fig. 4). This
result proposes a new mechanism of collective migration
with high directional accuracy that possibly relies solely on
DSO due to paired contact communication, distinct from
the mechanisms involving collective sensing and long-
range interaction [6,21].
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