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The cell cycle duration is a variable cellular phenotype that underlies long-term population growth and
age structures. By analyzing the stationary solutions of a branching process with heritable cell division
times, we demonstrate the existence of a phase transition, which can be continuous or first order, by which a
nonzero fraction of the population becomes localized at a minimal division time. Just below the transition,
we demonstrate the coexistence of localized and delocalized age-structure phases and the power law decay
of correlation functions. Above it, we observe the self-synchronization of cell cycles, collective divisions,
and the slow “aging” of population growth rates.
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The duration of a cell cycle, or the interdivision time
(IDT), is a fluctuating quantity in cellular populations, and
its statistical properties are thought to result from biological
mechanisms that regulate cell growth and division [1–5].
In most observations on mammalian cells and in a subset of
bacterial experiments, positive mother-daughter correla-
tions of IDTs have been measured (see Table S1 in [6]).
In general, the heritability of a trait (i.e., a positive parent-
offspring correlation) enables selection to act on the trait
distribution in a population to increase the long-term
population growth rate. In this Letter, we take up the
question of how selection and cell cycle heritability interact
to determine long-term population dynamics, a fundamen-
tal step toward understanding how evolution has shaped
cell cycle control mechanisms. Our work makes connec-
tions between the dynamics of age-structured populations
[32] and the error-threshold phenomena of evolutionary
theory [7,33] and is applicable in experimental analyses of
cellular population dynamics.
Model and stationary solutions.—We model a prolifer-

ating population by a branching process in whichKðτ; τ0Þ is
the transition probability density from τ0 to τ, where τ0 and τ
are the parent and offspring IDTs, respectively. We focus on
the analytically tractable Lebowitz-Rubinow model [34],
which uses the transition kernel

Kðτ; τ0Þ ¼ hδðτ − τ0Þ þ ð1 − hÞkðτÞ; ð1Þ

where δð·Þ is the Dirac delta function showing accurate
inheritance of the parent’s IDT, h represents the heritability
of IDTs in the model (0 ≤ h < 1), and kðτÞ is a probability
density function on the interval ðτ0;∞Þ, with 0 < τ0 < ∞.
A cell produces ẑ offspring at every division, where ẑ is
independently drawn from a fixed probability distribution
and its average is denoted by z > 0. The dynamics of cell
divisions in the population are governed by

ndivðτ; tþ τÞ ¼ z
Z

∞

0

Kðτ; τ0Þndivðτ0; tÞdτ0; ð2Þ

where ndivðτ; tÞdτdt is the expected number of dividing
cells (cells at the termination of a cell cycle) between times
t and tþ dt with IDT between τ and τ þ dτ [35]. The
expected number of divisions occurring between t and
tþ dt is given by NdivðtÞdt ≔ dt

R∞
0 ndivðτ; tÞdτ, and the

time-dependent population growth rate is defined by
Λt ≔ ðz − 1ÞNdivðtÞ=NðtÞ, where NðtÞ is the expected
population size at time t (see [6] for detailed derivations).
The steady-state, exponentially growing solution of

Eq. (2) is characterized by the time-independent growth
rate Λ and the probability density pdivðτÞ of IDTs of
dividing cells, which can be found by substituting the form
ndivðτ; tÞ ¼ NdivðtÞpdivðτÞ, where NdivðtÞ is proportional to
eΛt, yielding

pdivðτÞ ¼ ze−Λτ
Z

∞

0

Kðτ; τ0Þpdivðτ0Þdτ0: ð3Þ

Using Eq. (1) and solving the above equation, one obtains

pdivðτÞ ¼ qh;ΛðτÞ ð4Þ

where

qh;ΛðτÞ ≔
ð1 − hÞkðτÞze−Λτ

1 − hze−Λτ
; ð5Þ

which is a valid solution if there exists Λ such that
qh;ΛðτÞ ≥ 0 for all τ ∈ ðτ0;∞Þ, and which normalizes
pdivðτÞ, i.e., Λ is the unique real solution of
Qðh;ΛÞ ¼ 1, where
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Qðh;ΛÞ ≔
Z

∞

0

qh;ΛðτÞdτ: ð6Þ

If z ¼ 1, for example, then Λ ¼ 0 and pdivðτÞ ¼ kðτÞ for
any 0 ≤ h < 1; this can be realized as an isolated single
cell, where offspring at each division event are removed.
In the absence of IDT heritability (h ¼ 0), one recovers the

well-known result pdivðτÞ ¼ ze−ΛτkðτÞ where Λ is the uni-
que real root of the integral equation z

R∞
0 e−ΛτkðτÞdτ ¼ 1

[3,36]. For h > 0, one additionally must have 1−hze−Λτ>0
for all τ in the support of kðτÞ to ensure qh;ΛðτÞ ≥ 0. If
kðτÞ > 0 for all τ > τ0, we find

Λ ≥ ω0ðhÞ ≔ sup
τ>τ0

ln ðhzÞ
τ

¼ max

�
0;
ln ðhzÞ
τ0

�
ð7Þ

[see [6] for kðτÞ with bounded support]. Since Qðh;ΛÞ is a
monotonically decreasing function of Λ tending to zero as
Λ → ∞,Qðh;ΛÞ ¼ 1 has a unique rootΛ ¼ ΛðhÞ provided
that Q(h;ω0ðhÞ) ≥ 1. This condition holds for h < hc,
where hc is a heritability threshold defined by

Q(hc;ω0ðhcÞ) ¼ 1 ð8Þ

such that for h > hc, Q(h;ω0ðhÞ) < 1 and Qðh;ΛÞ ¼ 1
does not admit a real rootΛ. For h > hc, the solution pdivðτÞ
given inEq. (4) is incomplete as there is amissing probability,
1 −Q. For z > 1, the full solution is

pdivðτÞ ¼ qh;ΛðτÞ þ ½1 −Qðh;ΛÞ�δðτ − τ0Þ; ð9Þ

and substitution into Eq. (3) yieldsΛðhÞ ¼ τ−10 ln ðhzÞ for the
steady-state growth rate when h > hc [6].
Further analysis of Eq. (8) shows that a heritability

threshold hc < 1 exists if and only if
R
∞
0 dτkðτÞ=ðτ − τ0Þ

converges [6], e.g., if kðτÞ ∼ ðτ − τ0Þγ near τ0 for some
γ > 0. The steady-state population growth rate ΛðhÞ
qualitatively changes as h crosses the threshold: it depends
on kðτÞ for h < hc and becomes independent of it for
h > hc. The expected number of offspring having the same
IDT as their parent is hz, and only parents with τ0 ¼ τ0 can
generate offspring with τ ¼ τ0. Thus, the fraction of the
population with IDT τ0 grows with rate τ−10 ln ðhzÞ. If we
add a small fraction of τ0 cells to a population, they go
extinct if hz < 1, while if hz > 1, they can constitute a
giant cluster in the population’s genealogy. The subpopu-
lation localized at τ ¼ τ0 will be outcompeted by the rest of
the population for z−1 < h < hc, with ΛðhÞ determined by
Eq. (6), or it will dominate the population for h > hc and
thus dictate its growth rate to be ΛðhÞ ¼ τ−10 ln ðhzÞ. In
Fig. 1(a), we show a range of examples of kðτÞ that admit a
threshold hc. Increasing h from 0 to 1, ΛðhÞ increases
monotonically with a shallow slope, while past hc, the
slope of the growth rate changes markedly.

Localization phase transition of population age
structure.—We now show that the threshold behavior
identified above constitutes a phase transition in the strict
sense. We map the population to a statistical mechanical
ensemble as follows. From the viewpoint of single cell
lineages, i.e., the history of an individual and all of its
ancestors, an age-structured population is an ensemble of
trajectories—the sequence of IDTs along a lineage
ð…; τi−1; τi; τiþ1;…Þ is analogous to a microscopic state
of a large system (e.g., a configuration of spins on a lattice
or a conformation of a polymer in space)—while a single
ancestral cell division τi specifies the state of a single
component (e.g., a spin or a monomer) [6,37].
To analyze the structure of lineages observed above and

below hc, we consider the number of generations with
which the same IDT is consecutively inherited, which we
denote by m and call the “block size.” The probability
distribution of m over lineages, plinðmÞ, is analogous to a
correlation function, and its mean measures the typical
correlation length. From Eq. (3), one can infer that the joint
probability distribution of block size m and IDT τ is

plinðm; τÞ ≔ ð1 − hze−ΛτÞðhze−ΛτÞm−1pdivðτÞ: ð10Þ
For h < hc, the mean block size m̄ðhÞ is finite, while for
h > hc, m̄ðhÞ diverges. The probability distribution of IDTs
on lineages [6] is given by

plinðτÞ ¼
� ð1−hÞkðτÞze−Λτ

ð1−hze−τΛÞ2m̄ ; 0 ≤ h < hc

δðτ − τ0Þ; hc < h < 1
: ð11Þ

The expression indicates that the IDT distribution on
lineages in the population is localized entirely at τ ¼ τ0

(a) (b)

(c)

FIG. 1. Stationary solutions and their dependence on the
heritability parameter h. Solid curves show results using z ¼ 2
for (a) population growth rate, ΛðhÞ; (b) reciprocal mean block
size, m̄ðhÞ−1; and (c) reciprocal lineage mean IDT, τ̄ðhÞ−1. Dotted
line in (b),(c) indicates the result for isolated single cells (i.e.,
z ¼ 1). The IDT distribution kðτÞ [shown at inset of (a)] is chosen
to be a gamma distribution, shifted by τ0 ¼ 0.2, with shape
parameters α ¼ 1.5 (blue), 4 (orange), and 20 (green); kðτÞ ¼
ΓðαÞ−1θ−αðτ − τ0Þα−1e−ðτ−τ0Þ=θ for τ ≥ τ0. For the mean IDT to be
1, the scale parameter θ is chosen as τ0 þ αθ ¼ 1. hc ¼ 0.68,
0.60, and 0.58, respectively, for α ¼ 1.5, 4, and 20.
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above hc, despite the fact that the IDT distribution of
isolated lineages remains kðτÞ.
The mean block size m̄ðhÞ serves as an order parameter

that diverges for h > hc, and the continuity of the phase
transition can be characterized by its behavior near hc.
If limh→h−c m̄ðhÞ ¼ ∞, the transition is a continuous
phase transition, while if limh→h−c m̄ðhÞ < ∞ the transition
is referred to as discontinuous or “first order.” Analogously,
the lineage mean IDT, τ̄ðhÞ, which is given by ∂Λ=∂ ln z,
exhibits the same type of phase transition. In terms of
thermodynamics, the length of lineages t defines the system
size, and ln z can be seen as a generalized force (e.g., a
chemical potential). Then tΛ is the thermodynamic poten-
tial (e.g., grand potential) whose first-order derivative
by ln z coincides with the expected number of divisions
on lineages averaged across the population, which is the
extensive variable associated with ln z [6]. Examples of
the h dependence of m̄ðhÞ and τ̄ðhÞ are shown in
Fig. 1(b),(c). Assuming the law of large numbers, τ̄ðhÞ−1 ≃
D=t and m̄ðhÞ−1 ≃ S=D hold where D and S denote,
respectively, the number of divisions and the number of
switches to different values of τ on lineage [6].
Using the form of kðτÞ given in Fig. 1, where kðτÞ ∼

ðτ − τ0Þγ for τ near τ0, and computing m̄ðhÞ, we find that
the phase transition is continuous for 0 < γ ≤ 1 and
becomes discontinuous for γ > 1 [see Fig. 1(b)]. For a
discontinuous transition, one expects to observe the coex-
istence of two phases at the transition point, which is seen
in numerical simulations of finite populations shown below
[Fig. 2(a)]. We can also compute the probability distribu-
tion of block sizes, which decays exponentially below the
transition and follows power law statistics, plinðmÞ ∼m−γ−1

for large m, in the limit h → h−c as expected for correlation
functions in the vicinity of a phase transition [6]. Such an

appearance of long memory of IDT inheritance at the
transition point is likewise observed in simulations
[Fig. 2(a)].
Dynamics and aging of population growth rate.—In

finite sized populations, the stationary distribution, Eq. (9),
for h > hc is not achievable because any parent cell with
IDT τ0 > τ0 has probability zero of generating offspring
with IDT τ0. Additionally, the distribution, Eq. (9), cannot
be maintained as a steady state because cells with IDT τ0
can be lost from the population within finite time due to
coalescence. To observe dynamics in finite populations, we
conducted exact stochastic simulations in which cells are
randomly removed to maintain a fixed population size [6].
We sampled the initial population with size N ¼ 100
independently from the stationary probability distribution
with h ¼ 0, which we refer to as the “delocalized state,”
and simulated the population forward in time for a given
value of h > 0.
In simulations with h < hc, growth rates Λt fluctuate

around the expected steady-state growth rate (see [6]).
Near the heritability threshold, however, Λt exhibits
sudden transitions between two distinct, long-lived states
[Fig. 2(a)], which is expected for systems near a first-order
phase transition. One of these states represents localization
at the empirical minimum IDT, denoted by τ̂0, which is the
minimum IDTamong all the dividing cells within each time
bin [6]. In this state, the growth rate fluctuates around
τ̂−10 ln ðhzÞ over a sufficient period during which τ̂0 is
constant. The other phase represents delocalization, where
τ̂0 exhibits large fluctuations. For higher values of h, the
observed growth rate increases stepwise and fluctuates
around τ̂−10 ln ðhzÞ [Fig. 2(b)]. In this case, a fraction of the
population localized at τ̂0 is maintained over a significant
time interval until a new value of τ̂0 replaces the current
empirical minimum IDT. The time intervals between these
replacement events become increasingly long as τ̂0
approaches τ0 because IDTs that are shorter than the
current minimum become increasingly rare. Plotting values
of Λt at different simulation times as a function of h, the
curve possesses an inflection point hc;N slightly greater
than hc, which we refer to as the effective transition point at
fixed population size N (see [6] for further details).
Collective divisions, cell cycle synchronization, and

noisy inheritance.—In addition to aging dynamics, above
the transition divisions occur collectively and periodically
in finite populations. The number of divisions that occur,
binned in short intervals, is plotted over time (Fig. 3, left
panels), along with its autocorrelation function (Fig. 3,
right panels). The autocorrelation function does not oscil-
late below the transition but exhibits decaying oscillations
near the transition point and sustained oscillations above
the transition. The fact that the period of the autocorrelation
function is approximately τ0 reflects localization at τ̂0 close
to τ0. We note that division rate oscillations have also been
predicted to arise in cell-size control models due to negative
IDT correlations [38].

(a) (b)

FIG. 2. Dynamics and aging of growth rates in a finite
population. (a),(b) Time courses of reciprocal empirical minimal
IDT, τ̂−10 (top panels, orange, solid), compared to the minimal
IDT, τ−10 (gray dashed line); and growth rates (bottom panels, blue
line) compared to predicted stationary value (gray dashed line).
(a) Coexistence of delocalized and localized states near the
transition (h ¼ 0.7); (b) aging dynamics above the transition
(h ¼ 0.8). Parameters are as in Fig. 1 using α ¼ 4, which exhibits
a first-order localization transition. Population size in simulations
is maintained at N ¼ 100, and the effective heritability threshold
is hc;N ¼ 0.73 (see [6] for simulation details).
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We tested the robustness of the transition properties to
the inaccuracy of the inheritance of IDTs by allowing small
fluctuations of the offspring’s IDT when it inherits its
parent’s IDT with probability h. To do so, we modified the
transition kernel to be

Kðτ; τ0Þ ¼ hpnormðτ − τ0; σÞ þ ð1 − hÞkðτÞ; ð12Þ

where pnormðx; σÞ is a normal distribution density function
with standard deviation σ, truncated at τ0. As a result, the
population can reach equilibrium over a reasonable time-
scale, that is, the long-term behaviors between the two
distinct initial conditions coincide [6]. Collective divisions
are weaker but still detectable through the decaying
oscillations of the autocorrelation function of divisions
in the population. Additionally, we analyzed the behavior
of a general Gaussian kernel, truncated at τ0, with param-
eters specifying the mean, variance, and parent-offspring
correlation of IDTs (the latter can be negative or positive).
In all cases, for sufficiently high heritability, we found that
as the population size increases from N ¼ 1 to N ¼ 1000,
Λ exhibits a pronounced increase [see Fig. 4(a) and
additional results in [6]]. In contrast, for low heritability
or for negative IDT correlations, Λ varies little with N.

Similar behavior is observed for τ̄−1, indicating that even
without exact inheritance of parental IDTs, signatures of
the phase transition are observed when varying the pop-
ulation size [6].
Discussion.—In this Letter, we analyzed how the

strength of IDT heritability affects age-structured popula-
tion dynamics. In a model with heritable cell cycle
durations first introduced in [34], we demonstrate the
existence of a localization phase transition with a herit-
ability threshold above which the population’s distribution
of IDTs localizes at the minimal IDT, corresponding to
the fastest possible single-cell growth rate. We show that
the lineage mean IDT provides an order parameter of the
transition and above the heritability threshold predicts the
emergence of single-cell lineages that maintain perfect
inheritance of a minimal IDT.
A similar transition in exponentially growing popula-

tions is known in mutation-selection models of theoretical
population genetics [7,39,40]. For example, Kingman’s
house-of-cards model [40], which describes population
dynamics on a specific type of fitness landscape, exhibits
localization at maximal fitness below a critical mutation
rate. The results can be generalized to cases in which fitness
is correlated between parent and offspring using the theory
of positive linear operators [8].
The Lebowitz-Rubinow model is an idealization in

which IDTs are either inherited precisely (with probability
h) or not at all, and a key property of the model that
underlies localization is the existence of a positive, minimal
IDT, τ0. In [6], using experimental measurements in E. coli,
we show that by fitting empirical lineage IDT distributions
[using Eqs. (4) and (11)], the model correctly infers h [see
Fig. 4(b)]. Additionally, the data support the existence of
τ0 > 0. Thus, the Lebowitz-Rubinow kernel captures key
features of real biological data and correctly predicts its
underlying parameters.
We showed that the signature of the localization tran-

sition can be experimentally observed by measuring the

FIG. 3. Cell cycle synchronization in finite populations. Param-
eters are as in Fig. 2. Number of divisions Bðt; δtÞ binned over
δt ¼ 0.1 doubling time (a),(c),(e) and their autocorrelations (b),
(d),(f) are shown. Simulations were run over tmax ¼ 104 time
units, and the last 10 time units of the series are shown for (a), (c),
and (e), where time point 0 indicates the simulation end. The
autocorrelation function ACFðΔtÞ was computed over the entire
time series. The correlation coefficient was normalized to equal 1
at Δt ¼ 0. Dotted line indicates zero correlation. (a),(b) Below
the transition (h ¼ 0.6), the timing of divisions is not synchron-
ized. (c),(d) Near the transition point (h ¼ 0.7), the timing of
divisions is partially synchronized, observed as decaying oscil-
lation of the autocorrelation function. (e),(f) Above the transition
(h > hc;N), collective divisions are observed, indicating the self-
synchronization of cell cycles.

(a) (b)

FIG. 4. (a) Dependence of Λ on population size N. Simulations
use Eq. (12) with σ ¼ 0.1τ0 and parameters as in Fig. 2. (b) Fitting
the Lebowitz-Rubinow model using single-cell lineage data (F3
rpsL-gfp, glucose, 37°C from [3]). Empirical (shaded) and fitted
(solid) cumulative distribution of plinðτÞ. Inset: empirical pdivðτÞ.
Fitting yields h ¼ 0.23; for comparison, the Pearson correlation
of mother-daughter IDTs is 0.26. See [6] for methods and
additional data.
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population growth rate Λ at different population sizes in the
rangeN ¼ 1–1000, which is feasible in microfluidic experi-
ments [3,41,42]. Varying the population size enables one to
control the strength of selection in the experiments, as the
size of heritable fitness differences that selection can act on
efficiently scales with N−1. Negative IDT correlations, as
often observed in bacteria (Table S1 in [6]), correspond to a
lack of heritability and do not yield transitionlike behavior
for increasing N [6]. Above the IDT heritability threshold,
population growth rates exhibit aging dynamics similar to
evolutionary dynamics in a random, unbounded fitness
landscape in the low mutation rate limit [43,44]. While
aging dynamics occur for precise IDT heritability, transition-
like behavior is present in less accurate IDT inheritance
systems typical of biological systems [6].
Remarkably, the Lebowitz-Rubinow model does not

include cell-cell interactions, which are thought to be a
major mechanism for cell cycle synchronization, yet our
analysis predicts that strong but imperfect IDT heritability
may be sufficient to cause self-synchronization of cell cycles
in finite populations. This finding provides a starting point
for the design of new types of synthetic biological oscillators
that leverage population-level selective forces to establish
robust cell cycle synchronization with sustained oscillations.
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