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Migration of immune cells within the human body allows them to fulfill their main function of detecting
pathogens. We present experimental evidence showing the optimality of the search strategy of these cells,
which is of crucial importance to achieve an efficient immune response. We find that the speed and
directional persistence of migrating dendritic cells in our in vitro experiments are highly correlated, which
enables them to reduce their search time. We introduce theoretically a new class of random search
optimization problems by minimizing the mean first-passage time (MFPT) with respect to the strength of
the coupling between influential parameters. We derive an analytical expression for the MFPT in a confined
geometry and verify that the correlated motion enhances the search efficiency if the mean persistence length
is sufficiently shorter than the confinement size. Our correlated search optimization approach provides an
efficient searching recipe and predictive power in a broad range of correlated stochastic processes.
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A successful immune response crucially depends on its
first steps: finding harmful pathogens. Migration of
immune cells [1–3] is believed to be optimized in the
course of evolution to reduce their search time. Adopting an
efficient search and navigation strategy has been reported in
various biological systems as, for example, in the search for
specific target sites over a DNA strand by proteins [4–6],
escape through small absorbing boundaries and targeted
intracellular transport [7,8], delivery of chemical signals
in neurons [9–11], bacterial swimming and chemotaxis
[12–15], and animal foraging [16–18]. Nevertheless, the
optimality of the search for pathogens and other targets by
immune cells has neither been precisely verified nor
systematically studied. Understanding the mechanisms of
adaptive search and clearance in the immune system opens
the way toward more effective cancer immunotherapies and
vaccine design. Here, we investigate the dynamics of
dendritic cells (responsible for tissue patrolling and antigen
capture [3,19]) and present experimental evidence showing
that the recently observed universal coupling between their
migration speed and directional persistence [20] (mediated
by retrograde actin flows) enables them to reduce their
search time. Such a persistence-speed coupling was also
previously reported for cancer and T cell motility [21,22].
Search and transport efficiency of random processes

have been quantified by observables, such as the particle
diffusivity [23], transport-limited reactivity [24], and cover
time [25,26], or often by the mean first-passage time
(MFPT) that a searcher needs to find a target [13,27,28].
Optimal search strategies considered so far minimize the
search time with respect to one of the key parameters of the

problem, being either a structural property of the environ-
ment [7,29] or a parameter of the stochastic motion (e.g.,
the persistency in active random searches [30], the resetting
rate in diffusion processes with stochastic resetting to the
initial position [31,32], the ratio between the durations of
diffusive and directed motion in intermittent searches
[13,33,34], or the speed of the searcher when passing over
a target location [16]). However, the influential factors
governing the search efficiency are often correlated with
each other in reality, necessitating the development of novel
strategies for search optimization.
In this Letter, we consider theoretically a correlated

stochastic process and introduce, for the first time, a new
class of optimal search strategies based on tuning the
strength of coupling between key parameters. Inspired by
the observed correlations in the dynamics of dendritic cells
[20–22], we consider the correlation between the instanta-
neous migration speed v and local directional persistence p
of the searcher. The optimization is achieved by analyti-
cally calculating the MFPT and minimizing it with respect
to the strength of p-v coupling. The success of the scheme
in improving the MFPT nontrivially depends on the ratio
between the mean persistence length hlpi of the searcher
and the system size L; in the regime hlpi ≪ L (hlpi ∼ L),
the correlated motion is advantageous (disadvantageous)
for reducing the search time. We validate the analytical
predictions with extensive simulations, and the agreement
with experimental trends provides an additional support for
our model.
Migration of dendritic cells.—To study the dynamics of

migrating cells in our in vitro experiments, we tracked the
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2D motion of murine bone-marrow-derived immature
dendritic cells with a typical size of nearly 10 μm. The
motion was confined between the cell culture dish and a
roof held by microfabricated pillars made out of
polydimethylsiloxane as described in Ref. [35] at a height
of 3 μm. Both surfaces were coated with PLL-PEG
(0.5 mg=ml), a nonadhesive material to exclude movement
by cell adhesion. The cell concentration was low enough to
treat the cells as noninteracting. Cell nuclei were stained
with Hoechst 34580 (200 ng=ml for 30 min) (Sigma
Aldrich, St. Louis), and migration was recorded by
epifluorescence microscopy for at least 6 h at 37° with a
camera of 6.5 μm pixel size and sampling rate of 20 frames
per hour.
Experimental results.—A typical cell trajectory is shown

in Fig. 1(a), evidencing that the path is more straight when
the instantaneous migration speed v is higher. We quantify
the local directional persistence—the ability of the cell to
maintain its current direction of motion—by p ¼ cos θ,
with θ being the directional change at each recorded
position [36–38]. Denoting the distance between two
successive recorded positions by d, the local persistence
length lp can be obtained from p ¼ e−d=lp [39–41].
We calculate lp for each recorded position of each cell
trajectory. After averaging the data over small speed bins, a
clear coupling between the persistence length and migra-
tion speed can be observed, as shown in Fig. 1(b). The
behavior can be fitted by a logistic function

lp ¼ lp∞

1þ ðlp∞
=lpo

− 1Þe−γv ; ð1Þ

where lpo
and lp∞

represent the initial and saturation
levels, respectively, and γ ≃ 0.3. lp initially grows
exponentially [20] and eventually converges to lp∞

at high
speeds. To describe the overall coupling strength for
individual cells, we calculate the p-v correlation coefficient
κpv ¼ f½covðp; vÞ�=ðσpσvÞg for each cell. When calculat-
ing κpv for the averaged data over speed bins of 1 μm=min
shown in Fig. 1(b), a strong correlation κpv ≃ 0.9 is
obtained.
The key question is whether such a correlated random

motion helps the immune cells to improve their search
efficiency. To answer this, we select two subpopulations of
cells with similar mean persistence lengths 14.6� 0.2 μm
and 14.3� 0.3 μm but distinct mean correlation coeffi-
cients 0.2� 0.05 and 0.8� 0.05, respectively. Using the
experimental trajectories, we calculate the conditional
(i.e., over successful trials) MFPT τ�—per unit area for
each category and scaled by their mean speeds—to reach a
randomly inserted imaginary target of size 1 μm. The
search time is nearly 15% lower at higher correlation;
see Fig. 1(c). We checked that the observed trend is
independent of the target size by varying it by 2 orders
of magnitude. In order to understand these MFPT results,
we develop a stochastic model for correlated persistent
search in the following and prove that the p-v coupling
strategy is beneficial only when the mean persistence
length is much smaller than the size of the environment,
as in the case of dendritic cells.
Correlated persistent search model.—We consider a

discrete-time persistent random walk on a two-
dimensional square lattice of size L with periodic boun-
dary conditions and an isotropic initial condition for the
starting direction of motion [see Fig. 2(a)]. At each time
step, the searcher either decides to continue along the
previous direction of motion with probability qþ p or
chooses a new direction, each with a probability q, so
that 4qþ p ¼ 1. For a given p, the corresponding
persistence length of the walker can be obtained from
the probability of changing the direction of motion after l
steps as lp¼

P∞
l¼1lðqþpÞl−1ð1−q−pÞ¼ 4

3
ð1=ð1−pÞÞ.

However, the directional persistence p (and, therefore, lp)
is a variable parameter in our model ranging from 0
(ordinary diffusion) to 1 (ballistic motion), which depends
on the instantaneous speed vðtÞ. After updating the
orientation, a new speed is drawn from a speed distribu-
tion fðvÞ, and the searcher moves accordingly. Note that
here we deal with a non-Markovian position process in the
presence of memory effects [42,43]. Assuming that a
single target of one lattice-unit size is located at rT
(equivalent to regularly spaced targets on an infinite plane
with 1=L2 density), we introduce τðr; v; σÞ as the MFPTof
reaching the target starting at position rð≠ rTÞ with arrival
direction σ ∈ f→;←;↑;↓g and instantaneous speed v.
The evolution of τðr; v; σÞ can be described by the
following backward master equation:

FIG. 1. (a) Sample cell trajectory, color coded with respect to
instantaneous migration speed v. (b) Mean persistence length
over speed bins, hlpiv, versus mean speed in each bin. Red (gray)
data represent speed binning intervals of 1.0 ð0.1Þ μm=min. The
dashed line shows the fit via Eq. (1). Inset: Log-lin plot of hlpiv
vs hvi. (c) Comparison between the conditional MFPT τ� of two
categories of cells with low and high p-v correlations but similar
mean persistence lengths.
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τðr; v;→Þ ¼
Z

dv0fðv0Þ½ðqþ pÞτðrþ vî; v0;→Þ

þ qτðr − vî; v0;←Þ þ qτðrþ vĵ; v0;↑Þ
þ qτðr − vĵ; v0;↓Þ þ 1�; ð2Þ

and similar master equations for τðr; v;←Þ, τðr; v;↑Þ, and
τðr; v;↓Þ. fi; jg are Cartesian unit vectors. We consider an
arrival problem and assume τðrT; v; σÞ ¼ 0 when starting
from r ¼ rT . By introducing the Fourier transform
τðk;v;σÞ¼P

r τðr;v;σÞe−ik·r and using
R
dvfðvÞτðk;v;σÞ¼

τðk;σÞ, after some calculations we obtain

τðk; σÞ ¼ FðkÞ þ S½δðkÞ − e−ik·rT �
1 − BσðkÞ

; ð3Þ

with kσ∈fk·î;−k·î;k·ĵ;−k·ĵg, BσðkÞ¼
R
dvfðvÞpðvÞeivkσ ,

FðkÞ ¼ R
dvfðvÞqðvÞPσ e

ivkσ τðk; σÞ, and S ¼ L2 (see
Supplemental Material [44] for details). Next, we multiply
Eq. (3) by eivkσ, sum over σ, and integrate over v to derive
a closed expression:

FðkÞ ¼ AðkÞS½δðkÞ − e−ik·rT �
1 − AðkÞ : ð4Þ

Here, AðkÞ¼R
dvfðvÞpðvÞPσ½eivkσ=ð1−BσðkÞÞ�. Inserting

FðkÞ into Eq. (3) and averaging over all directions σ then
yields

τðkÞ ¼ CðkÞS½δðkÞ − e−ik·rT �
1 − AðkÞ ; ð5Þ

where CðkÞ ¼ 1
4

P
σf½1�=½1 − BσðkÞ�g. Finally, we apply

the inverse Fourier transform (with the components of
available modes being ki ¼ ð2πni=LÞ, ni ∈ ½0; L − 1�) and
numerically average over all possible starting positions r
to obtain the overall MFPT τ.
For an uncorrelated persistent random search with a

constant speed, the results of Ref. [30] are recovered (see
Supplemental Material [44]). In this case, the MFPT shows
a minimum τopt at an optimal mean persistence length
lopt
p ; see the simulation results in Fig. 2(b). The scaled

optimal value ðlopt
p =LÞ slightly decreases with increasing L

in finite systems but saturates in the limit L → ∞. For
correlated random searches, we here consider for definite-
ness a uniform speed distribution with a given mean value
hvi and a linear correlation between lp and v, correspond-
ing to an expansion of Eq. (1) up to the first-order term in v.
We use

lp ¼ hlpi þmκpvðv − hviÞ; ð6Þ

with κpv being the strength of persistence-speed coupling
(κpv ∈ ½−1; 1�) and m ¼ hlpi=hvi. Note that hlpi and hvi
are model parameters which are obtained from linearizing
the experimental relation (1). While the local persistence
length lp depends on the choice of the instantaneous speed
v, both mean values hvi and hlpi are kept fixed. By
extracting a random lpðvÞ, we calculate the corresponding
persistence parameter pðvÞ ¼ 1 − 4

3
½1=lpðvÞ� and insert it

in the above formalism to obtain τðhlpi; κpvÞ. We checked
that using Eq. (1) instead of Eq. (6) yields qualitatively
analogous results to those reported in the following.
Combined effects of hlpi and κpv on search efficiency.—

For positive p-v correlations (0 < κpv ≤ 1), Fig. 2(c)
interestingly reveals different dependencies of the MFPT
on the coupling strength κpv for choices of hlpi taken from
low, intermediate, and high persistence-length regimes A,
B, and C, as specified in Fig. 2(b). While τ is a decreasing
function of κpv at low hlpi, the search efficiency at

FIG. 2. (a) Sketch of the correlated persistent random search on
a square lattice. (b) MFPT τ, obtained from numerical simulations
of a constant speed (hvi ¼ 1) and uncorrelated p-v process, vs lp
normalized by L (L ¼ 200). τ is scaled by τo of an ordinary
random walk; the ratio of their asymptotic diffusion coefficient is
D=Do ¼ ½ð1þ pÞ=ð1 − pÞ�. (c) MFPT of a correlated p-v proc-
ess, scaled by the MFPT of an uncorrelated search (i.e., κpv ¼ 0),
vs the coupling strength κpv. Each curve belongs to a different
regime of hlpi shown in (b). The symbols are simulation results,
and the dashed lines represent analytical predictions via Eq. (5)
using a persistence extracted from Eq. (6). Insets: Schematics of
trajectories with the same hlpi but different κpv. (d) MFPT scaled
by the optimal search time of the uncorrelated process vs κpv and
scaled hlpi. Insets: τ vs κpv in the extreme regime hlpi → L (top,
linear scales) and hlpi → 0 (bottom, logarithmic scales).
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high hlpi even reduces with increasing κpv. According to
Fig. 2(d), the p-v correlated search strategy is always less
efficient than the uncorrelated search with the optimal mean
persistence length lopt

p , but the difference decreases as
hlpi → lopt

p . Nevertheless, adopting the ideal choice
hlpi ¼ lopt

p is unfeasible in natural systems, because
hlpi is set by the environmental conditions and the intrinsic
structure and dynamics of the real (biological) active agent.
Our results reveal that a p-v correlated search strategy
provides a realistic search optimization possibility for
searchers with hlpi ≪ lopt

p (regime A), by increasing the
chance of long relocations [see the insets in Fig. 2(c)]. As a
result, the statistics of reorientations changes toward an
optimal combination of long relocations and local tumbling
events while keeping the mean persistence length fixed at
hlpi, which enhances the search efficiency. However, in the
case of hlpi ≫ lopt

p (regime C), the trajectory is insuffi-
ciently curved, and a positive p-v correlation is even
disadvantageous. In the plateau regime B, hlpi is around
lopt
p and the p-v coupling is less influential. On the

contrary, an anticorrelation between persistence and speed
(−1 ≤ κpv < 0) diversifies the reorientation statistics for
highly persistent walkers with hlpi ≫ lopt

p , while it
homogenizes the relocation sizes in the case of hlpi ≪
lopt
p and, thus, has a positive effect on regime C but makes

the search less efficient in regime A.
For positive p-v correlations and in the extreme persist-

ence-length regime hlpi → L, our numerical analysis
indicates that τ grows almost linearly with κpv. On the
other hand, τ decays nearly algebraically with κpv in small
persistence-length regime hlpi → 0; see the edges of the
surface plot in Fig. 2(d) and its insets.
While the above analytical procedure considers uncorre-

lated successive speeds, we observe a positive speed
autocorrelation for migrating dendritic cells in experiments.
Thus, in general, one should replace the speed distribution
fðv0Þ in the master equation (2) with the probability
distribution of speed change fðv-v0Þ, which appears to
be analytically intractable. However, our Monte Carlo
simulation results (presented in Supplemental Material
[44]) verify that the speed autocorrelation plays a relatively
insignificant role in determining the search time compared
to the influential factors hlpi and κpv.
Simulation results.—In Monte Carlo simulations, we use

the sum-of-uniforms algorithm [45–47] to generate the
desired stochastic motion by correlating the persistence
length with the migration speed. The algorithm allows for
inducing a certain degree of stochasticity in the resulting lp
values; see the cloud of blue dots in Fig. 3(a). A parameter
Δ ∈ ½0; 1� controls both the fluctuation range of lp for a
given speed and the actual slope of the cloud. Increasing Δ
enhances the extent of the cloud and increases its slope (the
slope is, however, limited to a given upper threshold αmax).
This influences the MFPT of a correlated random search as
shown in Fig. 3(b), since the actual coupling strength is set

by Δ · αmax ¼ Δκpv. Nevertheless, in the following, we
show the simulation results for Δ ¼ 1; i.e., the slope of the
cloud is solely determined by the p-v coupling strength
according to Eq. (6). At each time step, we first extract a
new lp according to the above procedure for a given p-v
coupling strength κpv and the current instantaneous speed.
Next, a new speed is extracted randomly from a uniform
speed distribution with the mean value hvi (we checked that
an exponential speed distribution with the same mean leads
to similar results and the same conclusions). Once the new
v and lp are determined, we extract the instantaneous
persistence p of the searcher and move it v substeps within
one time step by allowing it to change the direction of
motion after each substep according to the persistence
probability p.
The analytical predictions for the MFPT in different

regimes of hlpi obtained via Eq. (5) are compared to
simulation results in Fig. 2(c); the agreement is satisfactory
despite that lp is deterministically generated in the ana-
lytical procedure, while it is allowed to fluctuate widely
around the desired value in simulations; also the possibility
of turning during substeps in simulations induces
differences. While varying the target size expectedly
changes the search time [48,49], it has no clear impact
on the efficiency of our correlated scheme when varied over
a wide range in our simulations. Another point is that
inducing p-v anticorrelation acts in the opposite direction;
i.e., it improves the search time in regime C, while it leads
to an increased search time in regime A (see Fig. S1 in
Supplemental Material [44] for the anticorrelated p-v
results and also the modest dependence of the MFPT on
the speed autocorrelation).
The fact that the p-v correlation is beneficial for

dendritic cells [Fig. 1(c)] suggests that they lie in regime
A of relatively small persistence lengths in Fig. 2(b), which
is consistent with the natural living environment of imma-
ture dendritic cells, i.e., interstitial space of peripheral
tissues. For example, the density of the dermal dendritic
cells in the skin is about a few hundred cells per mm2 [50].

FIG. 3. (a) Example of correlated ðv;lpÞ pairs generated in
simulations with the coupling strength κpv ¼ 0.8, drawn from a
distribution with hlpi ¼ 30 (dashed line) and width Δ ¼ 1. The
solid line represents the p-v coupling according to Eq. (6).
L ¼ 200. (b) Influence of the distribution width Δ on the MFPT
as a function of the coupling strength κpv.
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Then each dendritic cell patrols, on average, an area of
linear size L ∼ 100 μm when migrating with a persistence
length of around 10 μm. Indeed, regime A is even more
extended to the right in Fig. 2(b) for such small patrolling
areas. The density of dendritic cells in small intrapulmo-
nary airways is even less than a hundred per mm2 in the
absence of inflammation [51]. In such regions, each cell is
responsible for patrolling a larger area, and the correspond-
ing ðhlpi=LÞ in Fig. 2(b) further shifts to the left in zone A.
In summary, our study suggests improving the search

efficiency of active agents by inducing persistence-speed
(anti)correlations. The correlated random search is advanta-
geous when moving with a mean persistence length much
smaller than the size of the environment (as for dendritic
cells in peripheral tissues). In such a case, strengthening the
persistence-speed coupling diversifies the reorientation
statistics toward an optimal combination of long and
short relocations to explore space. On the contrary, the
reorientations can be diversified by inducing a persistence-
speed anticorrelation for highly persistent active agents,
leading to a more efficient search. Our approach offers a
fresh insight into the problem of active random searches,
with broad applications to other correlated stochastic
processes, such as chemotaxis and chemokinesis dynamics,
where the environmental and particle properties are con-
nected, in general.
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