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Three one-body profiles that correspond to local fluctuations in energy, in entropy, and in particle
number are used to describe the equilibrium properties of inhomogeneous classical many-body systems.
Local fluctuations are obtained from thermodynamic differentiation of the density profile or equivalently
from average microscopic covariances. The fluctuation profiles follow from functional generators and they
satisfy Ornstein-Zernike relations. Computer simulations reveal markedly different fluctuations in confined
fluids with Lennard-Jones, hard sphere, and Gaussian core interactions.
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Inhomogeneous fluids comprise a large class of relevant
and fundamental physical systems, in which a broad range of
phenomena and underlying mechanisms occur [1–3].
Examples include the behavior of fluids in narrow confine-
ment [4], electrolytes near surfaces [5], dense fluid structur-
ing as revealed in atomic force microscopy [6], thermal
resistance of liquid-vapor interfaces [7], nonequilibrium
steady states in active [8,9], sheared [10], and driven [11]
fluids, as well as the orientation-resolved ordering of water
around complex solutes [12–16]. The average one-body
density distribution, or short the density profile, is used as the
standard tool for analyzing such inhomogeneous systems.
In particular, the occurrence of hydrophobicity [15–27],

and its important consequences in biological systems, have
been at the center of much current scientific attention and
debate. At hydrophobic substrates or around hydrophobic
solutes, water avoids contact of its liquid phase. In the more
general framework of solvophobicity (where the liquid is not
necessarilywater), Evans and co-workers argue [17–25] that
the local compressibility is a more suitable indicator of the
occurrence of drying than is the bare density profile. These
authors obtain (and define) the local compressibility χμðrÞ
by differentiating the density profile ρðrÞwith respect to the
chemical potential μ in straightforward generalization of the
definition of the bulk compressibility; they also use corre-
lators and reweighting to obtain χμðrÞ. At a planar substrate
χμðrÞmeasures in-plane density fluctuations and the results
show a very pronounced signal when a drying film develops
near the substrate. The findings of Refs. [17–25], obtained
over a range of microscopic models (differently truncated
Lennard-Jones particles, as well as classical models for
water) convincingly demonstrate the superiority of χμðrÞ
over ρðrÞ as an indicator function for the occurring physics.
From a fundamental point of view, and in particular that

of classical density functional theory [1–3] (DFT) where
ρðrÞ is the central (variational) variable, the above situation
is perplexing, and it is unclear whether the observation is
merely relevant for the particular situations they consider or

whether it is indicative of a more general underlying
theoretical structure.
Here, we show that the latter is the case, when the local

compressibility χμðrÞ is complemented by two further local
measures of fluctuations. One of these additional fields is
the local thermal susceptibility χTðrÞ, which constitutes the
partial derivative with respect to temperature T of the
density profile. As we demonstrate below, χTðrÞ is indica-
tive of entropic correlation effects. It is then natural to also
consider a reduced density profile χ⋆ðrÞ, where the thermal
and chemical fluctuations have been subtracted. Hence

χμðrÞ ¼
∂ρðrÞ
∂μ

����
T
; ð1Þ

χTðrÞ ¼
∂ρðrÞ
∂T

����
μ

; ð2Þ

χ⋆ðrÞ ¼ ρðrÞ − μ
∂ρðrÞ
∂μ

����
T
− T

∂ρðrÞ
∂T

����
μ

ð3Þ

≡ ρðrÞ − μχμðrÞ − TχTðrÞ; ð4Þ

where the external potential VextðrÞ is kept constant under
the partial thermodynamic derivatives. Equation (3) is akin
to a Legendre transform of the density profile with respect
to the thermodynamic variables T and μ, and (4) is obtained
from (3) by using (1) and (2).
Given the relationships of the three fluctuation profiles

χaðrÞ, a ¼ μ; T;⋆ to the density profile (1)–(3), we dem-
onstrate three further fundamental properties: (i) representa-
tion as explicit correlation functions, given as ensemble
averages, which makes all three correlators directly acces-
sible in particle-based simulations via averaging. (ii) All
three fluctuation profiles can be generated as response
functions to changes in the external potential VextðrÞ.
(iii) The fluctuation profiles satisfy Ornstein-Zernike
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(OZ) relations, which remarkably have simpler structure
than the standard (inhomogeneous)OZ relation [1,2,28].We
demonstrate, based on computer simulation data, that the
fluctuation profiles are highly sensitive to the type of
interparticle interactions, and that they display markedly
different behavior for different model fluids.
Recall that the density profile ρðrÞ measures the micro-

scopically resolved mean number of particles at position r.
Its integral over the system volume V yields the average
total number of particles, N̄ ¼ R

V drρðrÞ, and for bulk
fluids ρðrÞ ¼ ρb ¼ const, where ρb ¼ N̄=V is the bulk
fluid (number) density. In the grand ensemble, when the
system is coupled to a heat bath at temperature T and to a
particle bath at chemical potential μ, then ρbðT; μÞ repre-
sents a fundamental equation of state of the bulk liquid,
from which all further thermodynamic quantities can be
obtained. Differentiation of ρb with respect to the thermo-
dynamic variables yields the bulk thermal susceptibility
when changing temperature, χbT ¼ ∂ρb=∂Tjμ, and the
isothermal compressibility when changing the chemical
potential, χbμ ¼ ∂ρb=∂μjT . Hence, χbμ has the status of a
chemical susceptibility. The respective right-hand sides
imply that χbT and χbμ are global response functions that
characterize the ease (or lack thereof) to influence the bulk
density upon changing the control parameter of either bath.
To be specific, we consider Hamiltonians of the form

Ĥ ¼ K̂ þ uðrNÞ þP
i VextðriÞ, where K̂ indicates kinetic

energy and uðrNÞ denotes the interparticle interaction
potential that depends on all N particle positions
rN ≡ r1;…; rN , where ri is the position of particle i ¼
1;…; N in D spatial dimensions. In order to resolve the
density locally it is common to introduce the density
operator ρ̂ðrÞ ¼ P

i δðr − riÞ. The density profile is then
obtained as the average ρðrÞ ¼ hρ̂ðrÞi, where the angular
brackets denote an average over microstates that are
distributed according to the (grand canonical) equilibrium
distribution function Ψ ¼ expð−βðĤ − μNÞÞ=Ξ, where
β ¼ 1=ðkBTÞ, with kB indicating the Boltzmann constant
and Ξ the grand canonical partition sum.
We start by considering correlators, i.e., ensemble

averages over suitable many-body (phase space) functions.
Differentiating the density profile in the form ρðrÞ ¼ hρ̂ðrÞi
with respect to the thermodynamic parameters according to
(1) and (2) naturally leads to results that are of covariance
form. We indicate the covariance of two operators (phase
space functions) Â and B̂ as covðÂ;B̂Þ¼hÂB̂i−hÂihB̂i.
We obtain

χμðrÞ ¼ βcovðN; ρ̂Þ; ð5Þ
χTðrÞ ¼ βcovðŜ; ρ̂Þ ð6Þ

≡ βcovðĤ − μN; ρ̂Þ=T; ð7Þ
χ⋆ðrÞ ¼ ρðrÞ − βcovðĤ; ρ̂Þ; ð8Þ

where Ŝ ¼ −kB lnΨ is the entropy operator, such that
S ¼ hŜi is the total entropy. The form (5) has been given
before in Refs. [18,20], while (7) is obtained by inserting
the explicit Boltzmann form of Ψ into (6). Crucially (7) can
be carried out via importance sampling in particle-based
simulations [which is hampered in (6) due to the poor direct
accessibility of lnΨ]. Note that (6) is different from the
entropy density hρ̂ Ŝ =Ni of Ref. [29]. It becomes apparent
that (3) leads to (8), which constitutes a reduced density
distribution, where the energy-density covariance is sub-
tracted from the full density profile.
For the ideal gas (u≡ 0) one can show χidμ ðrÞ ¼ βρðrÞ and

also obtain closed forms for χTðrÞ and χ⋆ðrÞ [30]. Turning to
interacting systems, we first consider the Lennard-Jones
(LJ) liquid confined in an asymmetric planar slit pore, which
consists of two opposingwalls, inspired byRef. [17].We use
grand canonical Monte Carlo simulations in D ¼ 3 dimen-
sions, with simulation box dimensions Lx ¼ 15σ and Ly ¼
Lz ¼ 6σ and periodic boundaries in the y and z directions.
Here, σ is the LJ length scale.We equilibrate for≥ 107 grand
canonical MCmoves before sampling data 108 − 109 times,
with 100−300 trialmoves between consecutive samples.We
consider a 3–9 LJ wall at x ¼ 0, described by an external
potential VLJ

extðxÞ ¼ ðϵw=2Þ½ðζ=xÞ9 − 3ðζ=xÞ3�, where the
range ζ is set to ζ ¼ 0.95σ [17]. The strength is chosen
as ϵw ¼ 0.49ϵ, where ϵ is the LJ energy scale. This value of
ϵw corresponds to a weakly attractive wall; it is intermediate
between the solvophobic and neutral cases ofRef. [17]. Both
VLJ
extðxÞ and the LJ pair potential are cut and shifted [1] at a

cutoff distance 2.5σ. The second wall is hard and located at
x ¼ Lx, such that no particle center can go beyond that
distance. We choose a state point on the liquid side of the
gas-liquid binodal: kBT ¼ 0.85ϵ and μ̃ ¼ −2.90ϵ; here we
use a reduced chemical potential with the kinetic contribu-
tion subtracted, μ̃≡ μ − kBTD lnðΛ=σÞ, where Λ indicates
the thermal de Broglie wavelength.
Figure 1(a) illustrates the resulting behavior of the three

fluctuation profiles χμðxÞ, χTðxÞ, and χ⋆ðxÞ. The density
profile ρðxÞ of the LJ liquid near each wall displays
depletion (negative adsorption) characteristic of solvopho-
bic substrates [17–25], cf. the inset in Fig. 1(a). As reported
by Evans and co-workers, χμðxÞ is indeed a better indicator
for the emergence of drying than ρðxÞ is. To see this,
consider that the amplitude of the signal, i.e., the enhance-
ment of local fluctuations over the bulk that is apparent in
χμ, but also in χT and in χ⋆ [main plot of Fig. 1(a)] is
quantitatively much stronger than the small depletion
effect that occurs in the local density near the wall [inset
in Fig. 1(a)]. This sensitivity is intimately linked to the
thermodynamic derivative structure (1)–(3), which, in a
Taylor series sense, probes the local environment around
state point T, μ. Clearly, this provides a mechanism to sense
the proximity of a phase transition. We have checked that
both routes to the fluctuation profiles, via thermodynamic
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differentiation according to (1) and (2), as well as covari-
ance sampling according to (5) and (7) give identical results
within numerical accuracy. In Fig. 1, each fluctuation
profile χaðxÞ is normalized by its respective bulk value
χba, which we obtain consistently from either an indepen-
dent bulk simulation run (without external potential and
with periodic boundaries in all three spatial directions) or
from the plateau value at the center of the slit.
Remarkably, χTðxÞ also displays a very strong response

near each wall; recall that this quantity is indicative of
entropic correlation effects, cf. (6). Notably, the entropic
fluctuations are much increased when the full temperature
dependence is taken into account, cf. the stronger signal of
χTðxÞwhen usingΛðTÞ [30] (light orange line), as compared
to Λ ¼ σ (dark orange line). The reduced density χ⋆ðxÞ
acquiresmuchoscillatory behavior [see inset inFig. 1(a)] and
it possesses a form that ismarkedly different from the density
profile ρðxÞ, in the present case of the LJ system. Note that
either convention for Λ carries the full information. Upon
changing the convention for Λ from σ → ΛðTÞ, the fluc-
tuation profiles acquire kinetic terms according to χTðrÞ →
χTðrÞ þ kBDχμðrÞ=2 and χ⋆ðrÞ → χ⋆ðrÞ − kBTDχμðrÞ=2,
with ρðrÞ and χμðrÞ remaining unchanged. We adhere to
Λ ¼ σ in the following [which implies considering only
configurational contributions in (6)–(8)].

The fluctuation profiles at a (quasi-)free gas-liquid
interface in the LJ system are shown in Fig. 1(b). In order
to stabilize gas-liquid coexistence in our grand canonical
simulation setup, we use a weak and slowly oscillating
external potential, VextðxÞ ¼ 0.2ϵ cos ð2πx=LxÞ, such that
the local chemical potential μ̃ − VextðxÞ crosses over from
the gas to the liquid side of the gas-liquid binodal. We use a
periodic simulation box that is extended in the x direction to
Lx ¼ 25σ and choose μ̃ ¼ −3.2ϵ and kBT ¼ 0.85ϵ. All
three χaðxÞ display a marked signal at the interface.
Returning to the asymmetric slit pore, we next consider a

confined fluid of hard spheres (HS) of diameter σ. Results
for the state point kBT ¼ 1ϵ and μ̃ ¼ 3.36ϵ are shown in
Fig. 1(c). At the planar hard wall [31,32] at x ¼ 15σ, and
more generally when all interactions are of hard-core type,
the fluctuation profiles simplify, as both interparticle and
external potential energy vanish for all allowed microstates.
Comparing the resulting form of the thermal susceptibility
(7) with the definition of the chemical susceptibility
(local compressibility) (5) yields the (hard core) identity
TχTðrÞ ¼ μχμðrÞ. Furthermore, if all (internal and external)
interactions are hard core, the reduced density (8) remark-
ably simplifies to χ⋆ðrÞ ¼ ρðrÞ. [Kinetic terms can be
regained by transforming to ΛðTÞ as described above.] The
results shown in Fig. 1(c) confirm these properties and

(a) (c)

(d)(b)

FIG. 1. Normalized fluctuation profiles χaðxÞ=χba, where a ¼ μ; T;⋆, for the LJ liquid (a),(b), the HS fluid (c), and the GCM (d).
Results are for fluids confined between a planar 3–9 LJ wall (left) and a planar hard wall (right) (a),(c),(d) and for the LJ free gas-liquid
interface (b). Shown are results for χT (orange solid line), χμ (blue dashed line), and χ⋆ (purple dotted line) as a function of distance x=σ
across the slit and normalized by the respective bulk value. The insets in (a),(c),(d) show the corresponding density profile ρðxÞσ3 (solid
green line) and replot the (non-normalized) reduced density profiles χ⋆ðxÞσ3 using either convention for Λ in (a) (as indicated); the
results in (b),(c),(d) are for Λ ¼ σ. The bulk values are χbTϵσ

3=kB ¼ −0.640 (a), −0.217 (c), 0.082 (d); χbμϵσ3 ¼ 0.092 (a), 0.065 (c),
0.063 (d), and χb⋆σ3 ¼ 1.553 (a), 0.515 (c), 0.051 (d) for Λ ¼ σ; for ΛðTÞ in (a): χbTϵσ

3=kB ¼ 0.432 and χb⋆σ3 ¼ 1.435.
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illustrate the spatial variation of the fluctuation fields both
at the hard wall and the soft LJ wall. For hard spheres and
soft external potentials, it is straightforward to show from
(8) that χ⋆ðrÞ ¼ ρðrÞ − β

R
dr0Vextðr0Þcovðρ̂ðrÞ; ρ̂ðr0ÞÞ.

Note that the covariance is a fundamental correlator of
density fluctuations [1,2].
To further assess how specific the fluctuation profiles are

to the particular type of model fluid, we consider the
Gaussian core model (GCM) [33–35], where particles are
allowed to penetrate each other at a finite energy cost. The
interparticle interaction potential has a Gaussian form,
ϕGCMðrÞ ¼ ϵe−r

2=ð2σ2Þ; we cut off and shift at a distance
of 3σ. Results for the fluctuation profiles of the GCM are
shown in Fig. 1(d), for μ̃ ¼ 2.16ϵ and kBT ¼ 0.5ϵ. The
profiles differ very markedly from those of both the LJ and
HS cases. Note in particular the sign change of χTðxÞ as
compared to the HS case shown in Fig. 1(c). In summary,
on the basis of the simulation data, we conclude that all
three fluctuation profiles are highly useful quantitative
indicators of molecular structuring phenomena over and
beyond the density profile. Of course, Figs. 1(a) and 1(b)
are most revealing since the density profile is fairly smooth
whereas the other profiles show considerable structure.
We next turn to addressing the fundamental status of the

fluctuation profiles inmore depth. In order to do so, we resort
to classical DFT as the primary modern framework for the
predictive description of the behavior of inhomogeneous
liquids. As a starting point for constructing functional
relations, one often takes the grand potential, in its elemen-
tary statistical mechanics formΩðμ; V; TÞ ¼ −kBT lnΞ, and
considers the change due to a perturbation of the external
potential VextðrÞ at position r. Standard functional calculus
demonstrates that the result is the equilibrium density profile,

ρðrÞ ¼ δΩ
δVextðrÞ

����
μVT

: ð9Þ

Here, Ω is trivially functionally dependent on VextðrÞ via its
occurrence in the Boltzmann factor as the integrand which
yields the partition sum Ξ.
The grand potential consists of a sum of energetic,

entropic, and chemical contributions, Ω ¼ U − TS − μN̄,
such that U − TS is the (total) Helmholtz free energy,
where U ¼ hĤi is the average energy and N̄ ¼ hNi. Given
the respective definitions of U, S, and N̄ in the grand
ensemble, it is straightforward to show that

χμðrÞ ¼ −
δN̄

δVextðrÞ
����
μVT

; ð10Þ

χTðrÞ ¼ −
δS

δVextðrÞ
����
μVT

; ð11Þ

χ⋆ðrÞ ¼
δU

δVextðrÞ
����
μVT

; ð12Þ

which establishes χμðrÞ as the response of the total
particle number, χTðrÞ as the response of the total
entropy, and χ⋆ðrÞ as the response of the total energy
upon changing VextðrÞ at fixed μ, V, and T. Combining
(10)–(12) and observing (9) and Ω ¼ U − TS − μN̄, it
becomes apparent that the density profile obtained via
(9) results from a sum of three distinct contributions,
ρðrÞ ¼ χ⋆ðrÞ þ TχTðrÞ þ μχμðrÞ, as is consistent with (4).
In DFT one proceeds by constructing a functional map

ρðrÞ → VextðrÞ which implies that the grand potential is a
functional of the density profile. The central minimization
principle then yields an Euler-Lagrange equation for the
density profile, given by

lnðΛDρðrÞÞ ¼ −βVextðrÞ þ βμþ c1ðr; TÞ; ð13Þ

where the one-body direct correlation functional is given by
the derivative c1ðr; TÞ ¼ −δβFexcð½ρ�; TÞ=δρðrÞ; here the
excess (over ideal) intrinsic free energy functional
FexcðT; ½ρ�Þ is unique for a given interparticle interaction
potential uðrNÞ. In practical DFT applications, one chooses
an approximation for Fexc½ρ� and then solves (13) for the
self-consistent ρðrÞ at the given values of T and μ. [Note
that c1 depends functionally on ρðrÞ].
As the Euler-Lagrange equation (13) holds for all values

of μ and T, with the corresponding equilibrium density
profile ρðrÞ, we can differentiate both sides of (13) with
respect to either μ or T. Via the functional chain rule (as can
be done in nonequilibrium [36–38]) one obtains two OZ
equations:

χexcμ ðrÞ ¼ ρðrÞ
Z

dr0c2ðr; r0Þχμðr0Þ; ð14Þ

χexcT ðrÞ ¼ ρðrÞ
�
c1ðrÞ
T

þ ∂c1ðrÞ
∂T þ

Z
dr0c2ðr; r0ÞχTðr0Þ

�
;

ð15Þ

where the excess susceptibilities are defined as χexcμ ðrÞ ¼
χμðrÞ − χidμ ðrÞ and χexcT ðrÞ ¼ χTðrÞ − χidT ðrÞ, with the ideal
gas results χidμ ðrÞ and χidT ðrÞ [30]. The inhomogeneous two-
body direct correlation function is given by c2ðr;r0Þ¼
δc1ðrÞ=δρðr0Þ≡−δ2βFexc½ρ�=δρðrÞδρðr0Þ. For hard spheres
∂cHS1 ðrÞ=∂T ¼ 0, which simplifies (15). The relation (14)
generalizes a result for planar symmetry by Tarazona and
Evans [39] obtained via integration over the inhomo-
geneous OZ equation; their strategy also leads to the
general form (14) [40]. As compared to the inhomogeneous
OZ relation for the (inhomogeneous) pair distribution
function [1], both (14) and (15) have remarkably simpler,
one-body structure. The striking role of c2 in (14) and (15)
as mediating nonlocal fluctuation effects is consistent with
its role in the inhomogeneous OZ relation.
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In summary, we have presented a description of inho-
mogeneous liquids based on three one-body fluctuation
profiles. In future work, it would be interesting to relate to
the internal-energy functional [29], and to quantum
mechanical systems, where the “softness” [41] represents
a concept similar to χμðrÞ. Investigating the role of all χaðrÞ
for drying [40], in complex geometries [26,27] and in
charged systems [42] would be highly interesting, as would
be devising new DFT approximation schemes for local
fluctuations, possibly based on machine learning [43,44] or
the recent Barker-Henderson functional [45].
More specifically, the systematic study of all three

fluctuation profiles might help to elucidate which type of
density correlations, whether particle number (1), entropy
(2), or energy (4), are relevant for hydrophobicity at the
nanoscale [15–27]; work along these lines is in progress for
drying [46]. Moreover, whether the observed enhanced
fluctuations are a mere consequence of a local decrease in
density, or rather the increase in fluctuations near a
hydrophobic solute forms the underlying physical mecha-
nism for the density depletion is an interesting question.
Furthermore, the OZ relations (14) and (15) provide a direct
and practical link between the interparticle structure, as
embodied in c2, and the behavior of the fluctuation profiles.
Equations (14) and (15) constitute both a natural bridge
toward inhomogeneous liquid integral equation theory
[1,47], but they also suggest the possibility of a stand-
alone one-body fluctuation framework, possibly flanked by
generalized density functionals [29,45,48] or by the trans-
fer of established [1], as well as the development of new,
closure relations for the one-body level. Beyond inhomo-
geneous fluids [3–7,12–15], the fluctuation profiles are
uncharted territory in freezing and precursors [47]. One
certainly would expect to find markedly different behavior
for crystals of hard [49] and soft particles [50].
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