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We investigate inelastic microwave photon scattering by a transmon qubit embedded in a high-
impedance circuit. The transmon undergoes a charge-localization (Schmid) transition upon the impedance
reaching the critical value. Because of the unique transmon level structure, the fluorescence spectrum
carries a signature of the transition point. At higher circuit impedance, quasielastic photon scattering may
account for the main part of the inelastic scattering cross section; we find its dependence on the qubit and
circuit parameters.
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Introduction.—A quantum-mechanical degree of freedom
can be severely affected by its coupling to a dissipative
environment. In a pioneering work [1], Schmid predicted
that a superconducting circuit as elementary as a Josephson
junction is insulating when it is Ohmically shunted by a
resistance larger than the resistance quantum, RQ ¼ πℏ=2e2.
This result, which was further studied in Refs. [2–4], reflects
a charge localization transition, which is associated with the
breaking of the ground state degeneracy. Remarkably the
prediction holds at any ratio between the Josephson and
charging energies of the junction, ẼJ and ẼC ¼ e2=2C̃,
respectively, where C̃ is the junction capacitance [5]. So far
evidence for the charge localization transition by dc [6–8] or
low-frequency [9] measurements remains elusive.
As a quantum many-body effect, the Schmid transition

should not only affect the ground state, but the excited
states as well. Here we find a spectroscopic signature of the
transition in the fluorescence spectrum [10] of a weakly
nonlinear Josephson junction with ẼC ≪ ẼJ, a.k.a. a
transmon qubit [12,13], coupled to a Josephson-junction
chain. The chain realizes a transmission line with an
adjustable impedance [14,15], in which plasmon waves
or, equivalently, microwave photons propagate freely. This
setup attracted recent experimental interest [16–18] as a
way to emulate quantum impurity problems with super-
conducting quantum circuits [19–24]. Our theory predicts a
characteristic dependence of the inelastic scattering cross
sections on the parameters of the setup.
Model.—Our consideration starts with the superconduct-

ing circuit of Fig. 1. The Josephson-junction chain to which
the transmon is coupled is characterized by the Josephson
energy EJ, and charging energies EC ¼ e2=2C and
Eg ¼ e2=2Cg, where C and Cg are the chain’s junction
and ground capacitances. Under the conditions

ECEJ ≫ ẼCẼJ ≫ Ẽ2
C; ð1Þ

the classical analysis, in which the Josephson junctions are
approximated as linear inductances, yields a narrow trans-
mon resonance that lies deep in the linear part of the waves’
dispersion. The transmon resonance frequency and half-
width are, respectively, ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ẼCẼJ

p
=ℏ and Γ ¼ 1=2ZC̃;

the waves’ dispersion is ωp ¼ vp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvp=ωBÞ2 þ 1

p
. Here

Z ¼ RQ=2K with K ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=8Eg

p
is the chain’s imped-

ance at low frequency, ωB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
=ℏ is the photon

bandwidth, v ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEg

p
=ℏ is the photon velocity and a

is the chain’s unit cell length. Noting that Γ ¼ ð4=πℏÞKẼC
and assumingK ≲ 1 in the relevant range of parameters, we
find from Eq. (1) that, indeed, Γ ≪ ω0 ≪ ωB. Within the
classical analysis, photon scattering is purely elastic.
To analyze inelastic scattering, we first notice that

K ¼ 1=2 is the critical value for the Schmid transition
[1]. Below that value, the environment induces charge
localization. The elementary processes responsible for it are
phase slips [25]. In an isolated transmon, the phase slip
amplitude for the first excited band is [12]

λ1 ¼
64ffiffiffi
π

p ẼC

ℏ

�
2ẼJ

ẼC

�
5=4

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8ẼJ=ẼC

p
ð2Þ

(parametrically larger than the phase slip amplitude for the
ground state, λ1=λ0 ¼ −8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ẼJ=ẼC

p
). Therefore, Γ may

FIG. 1. We study microwave photon scattering off a transmon
coupled to a Josephson-junction chain. The transmon has
Josephson energy ẼJ and capacitance C̃. The junctions in the
chain have Josephson energy EJ and capacitance C, each
superconducting island has ground capacitance Cg.
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become parametrically smaller than λ1 only deep in the
localized regime, K ≪ 1. Barring that, we treat phase slips
perturbatively. In most of the discussion below we
assume λ1 ≪ Γ. At the same time, the proliferation of
phase slips in the chain’s junctions, with an amplitude

λchain ∝ e−
ffiffiffiffiffiffiffiffiffiffiffiffi
8EJ=EC

p
, is known to drive a superfluid-to-

insulating transition below the critical value K ¼ 2
[26–28]. That physics can be disregarded either if the
bandwidth Γ that limits frequency exchange in a quasie-
lastic process (see below) is larger than the insulating gap,
Γ ≫ λchain, or if the chain is short enough to evade
the thermodynamic limit, L < v=λchain (but still long
enough to ignore effects related to a finite level
spacing, Δ ¼ πv=L → 0).
Ignoring the chain’s nonlinearity we use Hamiltonian

H ¼ 4ẼCðN̂ − n̂Þ2 þ ẼJ½1 − cos φ̂� þ
X
p

ℏωpa
†
pap ð3Þ

to describe the setup. Here φ̂ and N̂ are the transmon’s
conjugate phase and charge operators, ap and a†p are the
annihilation and creation operators of a linearly dispersing
photon of wave vector p, and

n̂ ¼ 1

π

X
p>0

fpðap þ a†pÞ with fp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KΔ=ωp

q
ð4Þ

is the charge displacement operator at the qubit. The sum in
Eq. (4) includes only the dynamical variables of the chain.
The static mode (p ¼ 0) compensates for an eventual
charge offset, which is effectively attenuated by the total
capacitance of the array, ∼Cg · ðL=aÞ [29].
The low-energy properties of Eq. (3) are described by the

boundary sine-Gordon model, HsG ¼ P
p ℏωpa

†
pap −

λ0 cosð2πn̂Þ [30]. Keeping the ratio ẼC=ẼJ small but finite
generalizes it to a new quantum impurity problem, in which
the transmon resonance brings in a nontrivial structure of
the high-frequency spectrum, as we discuss now.
Phase-slip vs quartic anharmonicities.—We first show,

by perturbative analysis in coupling fp, that phase slips
play the dominant role in quasielastic (or soft) photon
scattering, i.e., inelastic scattering with a small energy
transfer between the incoming and one of the outgoing
photons. For this we write the Hamiltonian (3) in
the transmon basis of discrete eigenstates (we set ℏ ¼ 1
hereinafter),

H ¼ H0 þ V; H0 ¼
X
s

εsjsihsj þ
X
p

ωpa
†
pap þ 4ECn̂2;

V ¼ −n̂
X
ss0

Wss0 jsihs0j with Wss0 ¼ 8EChsjN̂js0i: ð5Þ

Here we ordered the transmon eigenenergies, εs > εs0 if
s > s0 ≥ 0, and set ε0 ¼ 0. The partial inelastic cross
section for a photon with frequency ω to be converted

into three photons with frequencies ω1, ω2, ω3, such that
ω ¼ ω1 þ ω2 þ ω3, is obtained with Fermi’s golden rule,

γðω1;ω2;ω3jωÞ ¼
2π2

3!

jAp;p1p2p3
j2

Δ4
ð6Þ

(3! accounts for permutations of momenta that describe the
same final state) with ω ¼ ωp, ωi ¼ ωpi

, and a matrix
element obtained perturbatively in fp,

Ap;p1p2p3
¼ h0jap1

ap2
ap3

V

�
1

ωp −H0

V

�
3

a†pj0i

¼ −
K2Δ2

π4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωω1ω2ω3

p
X
srt

W0sWsrWrtWt0

×

�
1

ðεs þω1 þω2 −ωÞðεr þω1 −ωÞðεt −ωÞ
þ 1

ðεs þω1 þω2 −ωÞðεr þω1 −ωÞðεt þω1Þ
þ 1

ðεs þω1 þω2 −ωÞðεr þω1 þω2Þðεt þω1Þ
þ 1

ðεs þω1 þω2 þω3Þðεr þω1 þω2Þðεt þω1Þ

þ permutations of ω1;ω2;ω3:

�
ð7Þ

Here we ignored the last term in H0 (it vanishes in the
thermodynamic limit), and the summation is over the
transmon levels. The most divergent terms correspond to
the following sequences of transmon virtual states, 0 →
1 → 0 → t → 0, 0 → 1 → r → 1 → 0, or 0 → s → 0
→ 1 → 0, and to frequencies such that

jω − ε1j; jω1 − ε1j;ω2;ω3 ≪ ε1 ð8Þ

(as well as two other inequalities after permutation of ω1,
ω2, ω3). The contribution to Ap;p1p2p3

that corresponds to
the on-shell condition, ω ¼ ω1 þ ω2 þ ω3, and satisfies the
inequalities (8), is

−
2K2Δ2

π4ε1
ffiffiffiffiffiffiffiffiffiffiffi
ω2ω3

p jW01j2
ðω − ε1Þðω1 − ε1Þ

X
s

� jW1sj2
εs − ε1

−
jW0sj2
εs

�
:

ð9Þ

By substituting the operator n̂ with a gate charge N in
Eq. (5), one can calculate the gate sensitivity of the energy
levels ε1;0ðN Þ perturbatively in N , and identify [31]

X
s

�jW1sj2
εs−ε1

−
jW0sj2
εs

�
¼1

2

∂2½ε1ðN Þ−ε0ðN Þ�
∂N 2

����
N¼0

: ð10Þ

In the transmon limit [cf. Eqs. (1) and (2)], εsðN Þ ¼
εsð1=4Þ þ λs cosð2πN Þ, allowing us to replace the right-hand
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side of the exact Eq. (10) with 2π2ðλ1 − λ0Þ ≈ 2π2λ1.
Evaluating all remaining factors in Eq. (9) within the trans-

mon’s harmonic approximation, in which εð0Þs ≈ sω0 and

Wð0Þ
sr ¼ 8ẼCðẼJ=32ẼCÞ1=4½

ffiffiffi
s

p
δs;rþ1 þ

ffiffiffiffiffiffiffiffiffiffiffi
sþ 1

p
δs;r−1�, we

find the leading quasielastic [or soft inelastic (si)] contribution
to Eq. (6) for frequencies satisfying the conditions (8),

γsiðω1;ω2;ω3jωÞ ¼
16

3

K2Γ2λ21
ω2ω3ðω1 − ω0Þ2ðω − ω0Þ2

: ð11Þ

The partial cross section of quasielastic scattering, which
characterizes the transmon fluorescence,

γsiðω0jωÞ ¼
Z

ω−ω0

0

dω2γsiðω0;ω2;ω − ω0 − ω2jωÞ; ð12Þ

is obtained at jω − ω0j; jω0 − ω0j ≪ ω0 from Eq. (11), and
two other equations with permutations of ω1, ω2, ω3, as

γsiðω0jωÞ ¼ 32K2Γ2λ21
ðω − ω0Þ2ðω0 − ω0Þ2ðω − ω0Þ ln

�
ω − ω0

Δ

�
;

ð13Þ

here we used Δ as a low-frequency cutoff.
We contrast Eq. (13) with the one obtained for a weak

anharmonic (quartic) oscillator, after approximating 1 −
cosφ ≈ φ2=2 − φ4=24 in the Josephson term of Eq. (3) and
neglecting the phase slips. In that case, the gate sensitivity
is absent, the right-hand side of the identity (10) is zero,
rendering γsiðω0jωÞ ¼ 0. In harmonic approximation,
Eq. (7) vanishes identically. Treating the anharmonic
corrections to εs and Wsr appearing in Eq. (7) perturba-
tively, and assuming the incident photon to be close to
resonance, jω − ω0j ≪ ω0, yields

γqðω1;ω2;ω3jωÞ¼
ð256=3π2ÞΓ4Ẽ2

Cω
3
0ω1ω2ω3

½ðω0−ωÞðω2
0−ω2

1Þðω2
0−ω2

2Þðω2
0−ω2

3Þ�2
:

ð14Þ

Assuming that the outgoing photon is also close to
resonance, jω0 − ω0j ≪ ω0, we get

γqðω0jωÞ ¼ 32

9π2
Γ4Ẽ2

Cðω − ω0Þ3
ω6
0ðω − ω0Þ2ðω0 − ω0Þ2

: ð15Þ

The comparison of Eqs. (13) and (15) shows that phase
slips are much more effective in coupling the resonant
modes to the low-frequency ones than the anharmonic
corrections to the qubit levels. The low-frequency modes,
being far away from the resonance, do not hybridize well
with the qubit. The phase slips are free from that drawback
(at the expense of a potentially small value of λ1). Thus
phase slips dominate in the inelastic processes at ω0 → ω.

Differential cross section.—We proceed further by
accounting for higher-order quasielastic processes at finite
K. The dichotomy between the high-frequency photon
modes that are in resonance with the transmon and the low-
frequency modes motivates a two-band approximation:

Heff ¼ ω0j1ih1j þ
X
p>pc

ωpjpihpj þ
X
p>pc

½tjpih1j þ H:c:�

þ
X

0<p<pc

ωpa
†
pap þ λ1j1ih1j cosð2πñÞ: ð16Þ

Here the first line represents the hybridization of the
transmon with high-frequency photons; jpi ¼ a†pj0i, where
j0i is the ground state, j1i is the state in which (only) the
transmon is excited, and t ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ΓΔ=π
p

is the hybridization
matrix element. The second line in Eq. (16) accounts for the
coupling of low-frequency photons and the transmon
excited state through phase slips [32]; the local charge
operator ñ differs from Eq. (4) by the restriction of the sum
to low-frequency modes, 0 < p < pc. The separation
between low- and high-frequency photons is set by
frequency ωc ¼ vpc, such that Γ ≪ ω0 − ωc ≪ ω0.
The first line in the Hamiltonian (16) is equivalent to the

Fano-Anderson model. Its eigenstate jki with energy ωk
such that ωk − ω0 ¼ −Γ tanðωkL=vÞ has an overlap

β2k ≡ jh1jkij2 ¼ ΓΔ=π
ðωk − ω0Þ2 þ Γ2

ð17Þ

with the transmon state, assuming ωk is close to the
resonance, jωk − ω0j ≪ ω0 [33]. In new variables,
Hamiltonian (16) then reads

Heff ¼
X
k>pc

ωkjkihkj þ
X

0<p<pc

ωpa
†
pap þH1;

H1 ¼ λ1
X

k;k0>pc

βkβk0 jkihk0j cosð2πñÞ: ð18Þ

It is the “backaction” of the qubit on the dynamic charge
ñ that leads to the emission of “soft” photon modes by the
resonant ones [34]. Using Eq. (18), we apply Fermi’s
golden rule to calculate the (quasielastic) fluorescence
spectrum perturbatively in λ1,

γsiðωk0 jωkÞ ¼
2π2

Δ2

X
f

jhk0; fjH1jk; 0ij2δðωk − ωk0 − EfÞ:

ð19Þ

Here jk; fi ¼ jki ⊗ jfi and jfi is a multiphoton state with
energy Ef formed out of low-frequency photon modes. By
standard manipulations, we express Eq. (19) in terms of a
photon correlation function for an array disconnected from
a transmon,
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γsiðω0jωÞ ¼ λ21Γ2=π
½ðω − ω0Þ2 þ Γ2�½ðω0 − ω0Þ2 þ Γ2� Cðω − ω0Þ;

ð20Þ
with

CðΩÞ¼2Re
Z

∞

0

dteiðΩþi0þÞthcos2πñðtÞcos2πñð0Þi: ð21Þ

Here ñðtÞ ¼ ð1=πÞP0<p<pc
fpðape−iωpt þ a†peiωptÞ. We

use extensively Baker-Hausdorff formula [37] to find

CðΩÞ¼2e−4
P

p
f2pRe

Z
∞

0

dteiðΩþi0þÞtcosh
�
4
X
p

f2pe−iωpt

�

ð22Þ

at zero temperature. The Taylor expansion of the cosh
factor in Eq. (22) allows interpreting Eq. (20) as a partial
cross section of a high-frequency photon scattering into
another high-frequency photon, while an even number of
low-frequency photons is produced. At K → 0, Eq. (20)
reproduces Eq. (13) upon the renormalization [38] of

the phase slip amplitude, λ1 → λ1e
−2
P

p
f2p ≈ λ1ðΔ=ω0Þ2K ,

and not too close to the resonance, Γ ≪ jω − ω0j;
jω0 − ω0j ≪ ω0.
Being proportional to λ21ðΔ=ω0Þ4K, the three-photon

amplitude vanishes in the thermodynamic limit at finite
K. Thus higher-order processes should be included. Instead
of evaluating and summing them we note that at Δ → 0
Eq. (21) can be simplified,

CðΩÞ ≈ Re
Z

∞

0

dteiðΩþi0þÞthei2πñðtÞe−i2πñð0Þi: ð23Þ

This correlator has been much studied [5,39],

CðΩÞ ¼ π

Γð4KÞ
1

Ω

�
Ω
ω0

�
4K
e−Ω=ω0 ; Ω > 0: ð24Þ

Here Γð4KÞ is the Gamma function. Equation (20) with
CðΩÞ of Eq. (24) is our main result [40]. It relates the
fluorescence spectrum with the dynamical phase-boost
susceptibility ∝ CðωÞ at ω ≪ ω0 [3] in the same range
of validity defined by Eq. (1).
Inserting Eq. (24) in Eq. (20) we find that at resonant

excitation, jω − ω0j≲ Γ, and in the frequency range ω0 ≫
ω0 − ω0 ≫ Γ of the emitted photons, the fluorescence
intensity is a power law [41] of ω0 − ω0,

γsiðω0jωÞ ¼ 1

Γð4KÞ
λ21
ω3
0

�
ω0 − ω0

ω0

�
4K−3

: ð25Þ

The perturbative-in-λ1 result for the differential cross-
section of quasielastic scattering works at any K, except

its smallest values allowing for λ1 ≳ Γ. The behavior of
Eq. (25) parallels the one of the dynamical susceptibility
AðωÞ of Eq. (10) in Ref. [42]. These two quantities are not
normalizable at K < 1=2, which is the signature of the
charge localized phase. At the critical point (K ¼ 1=2), we
find γðω0jω0Þ ∝ 1=ðω0 − ω0Þ as the dynamical critical
signature of the Schmid transition.
Total inelastic cross section.—Finally, we show that at

K < 1=2 the quasielastic transitions may yield the main
contribution to the total inelastic cross section [43],

γðωÞ ¼
Z

ω

0

dω0γðω0jωÞ: ð26Þ

Indeed, at K < 1=2 the dominant contribution of the partial
cross section (20) to the integral comes from a vicinity of
order Γ near its upper bound. We may thus extend the lower
bound in Eq. (26) to −∞ and evaluate the quasielastic
component of the total cross section as

γsiðω0Þ ¼
π

2 sinð2πKÞΓð4KÞ
λ21
Γ2

�
Γ
ω0

�
4K

ð27Þ

for the incoming photons lying within the width of the
resonance. Furthermore, the inelastic spectral linewidth is
asymmetric, see Fig. 2, with asymptotes

γsiðωÞ ¼
πλ21Γ=ω3

0

Γð4KÞ
�

ω0

ω − ω0

�
3–4K

ð28Þ

at ω − ω0 ≫ Γ and

γsiðωÞ ¼
πð1 − 4KÞλ21Γ2=ω4

0

sinð4πKÞΓð4KÞ
�

ω0

ω0 − ω

�
4−4K

ð29Þ

at ω0 − ω ≫ Γ. Importantly, the found γsiðωÞ is indepen-
dent of the artificially-introduced partition frequency ωc
thus justifying the use of Eq. (16).

FIG. 2. Frequency dependence of the total cross section at zero
temperature for K ¼ 0.01 (blue), 0.1 (orange), 0.2 (green), 0.25
(red), 0.3 (purple), and 0.4 (brown).
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To assess the contribution to Eq. (26) of deeply inelastic
processes, we use the differential cross section (14)
stemming from the transmon anharmonicity and favoring
large energy transfer between the incoming and any of the
outgoing photons. The corresponding contribution to the
total cross section is

γqðω0Þ ¼ α
Γ2Ẽ2

C

ω4
0

with α ≈ 0.45: ð30Þ

The comparison with Eq. (27) shows that quasielastic
processes dominate the total inelastic cross section γðωÞ
if λ1=ẼC ≫ ðΓ=ω0Þ2ð1−KÞ. Under the assumption λ1 ≪ Γ,
this condition is possible to satisfy only at K < 1=2: in
terms of the Schmid transition, the phase-slip mechanism
may dominate the total inelastic cross section only in the
charge-localized phase.
While Eqs. (20) and (24) remain valid at K > 1=2, their

use in evaluation of γðωÞ is not justified: the dominant
contribution to the integral in Eq. (26) at K > 1=2 comes
from ω − ω0 ≳ ωc and depends on ωc, rendering the model
(16) inapplicable. This is consistent with our perturbative
analysis of Eq. (5): there is no parameter allowing to single
out the phase-slip-induced transitions from other processes
at energy losses comparable to ω0.
It is straightforward to generalize Eqs. (20) and (27)–(29)

to finite temperatures T, by using the corresponding finite-
T generalization [5,39] of CðΩÞ. A low temperature,
T ≪ ω0, leaves the power-law spectrum (25) intact at
ω0 − ω0 ≫ T. The total inelastic cross-section in the
scaling region [Γ; jω − ω0j; T ≪ ω0] is found as

γðω; TÞ
γðω0; 0Þ

¼ sinð2πKÞ
π2

τ4K−1

1þ ν2

Z
∞

0

dx
eπx=τjΓð2K þ ix=τÞj2

ðx − νÞ2 þ 1
;

ð31Þ
with τ ¼ 2πT=Γ and ν ¼ ðω − ω0Þ=Γ. Its temperature
dependence at resonance, ω ¼ ω0, is shown in Fig. 3.
The total cross section increases (decreases) with the
temperature at K > 1=4 (K < 1=4). At low temperature
T ≪ Γ,

γðω0; TÞ
γðω0; 0Þ

≈ 1 −
1

2

�
2πT
Γ

�
4K
; ð32Þ

where the second term is a significant correction in a wide
temperature range at K ≪ 1.
Conclusion.—We believe the spectrum of the fluores-

cence that we predict, see Eqs. (20)–(25), charts an
interesting direction for future experiments, while the found
total inelastic cross section, see Eqs. (26)–(32), is directly
related to the ongoing experiments [44] in the spirit of
Refs. [16–18]. Indeed, the internal quality factor QðωÞ of a
discrete mode in a finite-length array, which is routinely
measured in such experiments, can be expressed in terms of
an inelastic decay rate, QðωÞ ¼ ω=ΓinðωÞ. The latter is
related to the total inelastic cross section through
ΓinðωÞ ¼ γðωÞΔ=π. Lastly, in the weakly nonlinear trans-
mon regime, which we focussed upon, photon scattering
remains mostly elastic. As the nonlinearity increases, we
may anticipate large inelastic cross sections, which would
manifest a different kind of quantum impurity problem than
the Kondo regime studied in Refs. [20,21].
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