
 

Particle-Hole Symmetry Breaking in a Spin-Dimer System TlCuCl3 Observed at 100 T
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The entire magnetization process of TlCuCl3 has been experimentally investigated up to 100 T
employing the single-turn technique. The upper critical fieldHc2 is observed to be 86.1 T at 2 K. A convex
slope of theM-H curve between the lower and upper critical fields (Hc1 andHc2) is clearly observed, which
indicates that a particle-hole symmetry is broken in TlCuCl3. By quantum Monte Carlo simulation and the
bond-operator theory method, we find that the particle-hole symmetry breaking results from strong
interdimer interactions.
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Bose-Einstein condensation (BEC) is one of the most
fascinating purely quantum-mechanical phenomena. Early
experiments have successfully realized the BEC state on
dilute atomic gas systems under nanokelvin temperatures
with the laser cooling technique [1]. The fact that nano-
kelvin temperatures are required makes experimental stud-
ies of BEC difficult to conduct and the amount of research
is limited. On the other hand, based on a correspondence
between a quantum antiferromagnet and a lattice Bose gas
system [2], a new research area on BEC with spin (s)
systems in which spins are strongly correlated to each
other, has opened up in the last two decades. It has been
proposed that the field-induced ordering phase in TlCuCl3
(a three-dimensional s ¼ 1=2 spin-gap dimer system) can
be interpreted as a BEC phase of magnons [3–7], and its
magnetic field-temperature (H-T) phase boundary is
claimed to follow the power-law dependence as

gjHc1ðTÞ −Hgj ∝ Tα; ð1Þ

where g is the g factor of the spin system, Hc1 is one of the
critical magnetic fields of the BEC at a finite temperature T,
Hg is the critical magnetic field at zero kelvin, and
the critical exponent α ¼ 1.5 under Hartree-Fock-Popov
(HFP) approximation. It also provides a new experimental
approach to study the BEC, i.e., magnons in a three-
dimensional spin-gap dimer system are studied as bosons in
a lattice system.
In contrast to the ultracooling atomic gas, observations

of critical behaviors around quantum critical points in the
spin systems are accessible because of their high degree of
homogeneity in boson density and wide temperature
window of the critical boundary [8]. In a pure dimer
system, the transition between singlet state and the
Sz ¼ 1-triplet state under an external magnetic field drives
a phase transition at the critical magnetic fieldHg ≡ Δ=gμB
with Δ the spin gap. The Hg separates into two distinct

critical pointsHc1 andHc2 in real spin-gap materials due to
interdimer interactions; these two critical magnetic fields
correspond to the beginning and saturation of the
magnetization, respectively. The criticality in the vicinity
of the Hc1 along the H-T phase boundary has been
extensively studied in several materials such as TlCuCl3,
Ba3Cr2O8, and Sr3Cr2O8, by means of magnetization,
magnetostriction, neutron, and the magnetocaloric effect
(MCE) measurements [9–14]. On the other hand, detailed
experimental measurements at the high-field side near Hc2
are still lacking for materials that possess large Hc2
like TlCuCl3.
In the theoretical analyses onHc2 of BaCuSi2O6 [15], the

transformation from a spin Hamiltonian to an effective hard-
core boson model was derived by projecting the original spin
states to the low-energy singlet and the Sz ¼ 1-triplet states.
Here, the singlet and Sz ¼ 1-triplet states, respectively,
correspond to the holes (particles) and particles (holes) of
bosons at a low (high) magnetic field. A particle-hole
symmetry [16] in this formulation is explicit in that the
effective Hamiltonians at the low magnetic field and the high
field are related by a particle-hole transformation on the
bosonic creation operators and, thus, the magnetic-field
dependence of the order parameters in phase diagrams
has a symmetry with respect to the particle-hole invariant
pointH ¼ ðHc1 þHc2Þ=2. For instance, such a symmetry is
reflected by the mirror symmetry observed in the shape of
the phase boundary of the BEC phase in BaCuSi2O6.
Actually, the symmetric nature is verified in the bond
operator theory [17] by showing equality of the critical
exponents in the vicinity of the two critical points, Hc1 and
Hc2. A similar symmetric phase diagram was also obtained
in Ba3Cr2O8 [13]. In the following discussion, we will call
such a phase-diagram symmetry “particle-hole symmetry.”
It should be noted that the critical behaviors near theHc2

in the system of which interdimer interactions are strong
has never been well investigated. In such systems, the
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particle-hole symmetry of the BEC phase boundary is
expected to be broken because the conditions of the hard-
core boson picture are not satisfied due to the effect of the
hybridization between the singlet and Sz ¼ −1, 0 triplets.
According to the bond operator theory, the pressure effect
(i.e., the changing of the interdimer interaction) on the
phase boundary in theH-T plane is different atHc1 andHc2
[18], indicating that the symmetry can be modified by the
interdimer interaction. TlCuCl3 is one of the most pro-
mising materials to study the symmetry of the phase
boundary and discuss the particle-hole symmetry, because
it possesses strong interdimer interactions.Hc1 is 5.6 T [19]
and Hc2 is theoretically predicted [20] to be about 87 T; a
strong contrast of these two critical points provides us a
unique situation where the degrees of the quantum hybridi-
zation between the singlet and triplet states are different
between two critical points. However, Hc2 has never been
experimentally observed yet in the first-discovered magnon
BEC compound, TlCuCl3 because of technical difficulties
to perform a 100-T class magnetic field experiment.
In this Letter, we study the magnetization (M) process of

TlCuCl3 up to 100 T and discuss the particle-hole sym-
metry breaking of the BEC phase. The particle-hole
symmetry in the hard-core boson picture has been found
to be broken through the quantum hybridization effect due
to the strong interdimer interactions. Hc2 is experimentally
determined to be 86.1 T at T ≈ 2 K that is in good
agreement with the prediction by the bond-operator theory
[20]. The magnetization curve (M-H curve) has a mono-
tonous convex downward shape, which manifests the
difference between the critical exponents around Hc1
and Hc2 and implies the absence of the particle-hole
symmetry in TlCuCl3. We have also precisely analyzed
the M-H curve with a numerical calculation based on
quantum Monte Carlo (QMC) method. The simulation
shows that the ratio of an interdimer interaction (J2) and the
intradimer interaction (J), J2=J is about 0.35, which is
consistent with the results of the neutron-scattering experi-
ment [20]. Finally, we theoretically evaluate the critical
exponents at near Hc1 and Hc2 and discuss on the micro-
scopic origin of the breaking of the particle-hole symmetry
using a combinatorial approach of the bond-operator theory
and QMC calculation.
A single crystal of TlCuCl3 [19] was used for the

experiments. The single-turn coil (STC) technique was
employed to generate a pulse magnetic field of up to
110 T. The magnetization measurements have been done
with a pick-up coil and an induction voltage in the
magnetization process is recorded as a function of time
[21,22]. The magnetization curve is obtained by a
numerical integration of the measured dM=dt signal
[21,22]. In the present work, we use a double-layer
pick-up coil [the number of the turns of the coil (80 in
total) is doubled from the standard number [22] ] which
improves the signal intensity. The magnetization signal

dM=dt is obtained by subtraction of the background
signal from the sample signal. Here, the background
signal is obtained by a measurement without the sample
and the sample signal is a measured signal with the
sample. The set of the two signals is obtained by two
successive destructive-field measurements. This simple
manner has advantages compared to the previous sample-
position-exchange manner [22] in regard to stability of the
measurement position and effects from inhomogeneity of
the magnetic field. A liquid helium bath cryostat with the
tail part made of plastic has been used [22]; the sample
was immersed in liquid helium, and a measurement
temperature of 2 K was reached by reducing the vapor
pressure.
Figure 1 shows the magnetization process and the

magnetic field dependence of the dM=dH at 2 K; the
magnetization up to 60 T in Ref. [20] is also presented for
the comparison of theM-H curves. The agreement of them
is excellent. TheM-H curve is obtained from the average of
three independent experiments using both the up-sweep
and down-sweep processes; we do not use the data of
magnetization below 70 T of the down-sweep for the
average because the measurement in the field-decreasing
process is rather imprecise due to the field inhomogeneity
[21]. We analyze the Hc1 around 6 T using the data
previously obtained with a nondestructive pulse magnet
[20], because, at the beginning of destructive ultrahigh
magnetic field generation, a huge switching electro-
magnetic noise is inevitably generated for injection
mega-ampere driving currents [21,22]. The magnetization
is clearly measured in fields from 30 to 100 T, exhibiting
the saturation at fields exceeding 90 T.

FIG. 1. The magnetization curve measured up to 95 T, as well
as the dM=dH data. Red marks represent the results of Ref. [20].
The inset shows the dM=dH data (up-sweep and down-sweep)
with initial temperature at 2 K.
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The critical behavior is observed in the vicinity of the
saturation in the dM=dH curve as shown in Fig. 1: A clear
peak labeled byHc2 in dM=dH curve corresponds to a kink
of the M-H curve observed at near Hc2. The magnetization
increases continuously between Hc1 and Hc2, in which the
M-H curve shows a convex slope.
Because of the fast sweep rate of the pulsed magnetic

field (∼8 μs), the sample undergoes a semi-adiabatic
process. The spin entropy change caused by a phase
transition is transferred into the phonons and leads to
the temperature change of the sample. Therefore, it is
necessary to consider the temperature change during the
magnetization process. Because the MCE experiment up to
100 T is impossible to be conducted with current experi-
mental techniques, we estimate the MCE effect using the
MCE reported in another magnon BEC dimer spin system.
According to Ref. [15], the temperature change at 45 T near
Hc2 in BaCuSi2O6 is around 0.03 K, where the specific
heat is 1.8 J=ðmolKÞ at 2.5 K. Then entropy change
ΔS ¼ 0.02 J=mol is estimated to be transferred from the
magnons to phonons around the phase transition point.
Because the entropy change in the spins at Hc2 should
reflect the way of the saturation of the magnetization where
the BEC phase is terminated, the entropy change should be
of more or less a similar value as other spin systems which
undergo magnon BEC with spin-1=2 dimers. Therefore, the
change of entropy observed in BaCuSi2O6 can be applied
to the analysis on TlCuCl3. The specific heat in TlCuCl3
contributed by phonons is Cphon ¼ 4 J=molK at an initial
temperature T in ¼ 2 K [23], and thus the temperature rise
from the initial temperature is estimated to be ΔS ·
T in=Cphon ¼ 0.01 K for TlCuCl3 at near Hc2. The inset
of Fig. 1 shows dM=dH for both field up-sweep and down-
sweep processes. The overlapping of both processes
implies that the temperature variation is actually small.
Thus, critical points and critical exponents can be con-
firmed and analyzed at 2 K in the present work.
Hc2 is determined by the peak in the dM=dH curve and

found to be 86.1� 0.5 T. It is very close to the predicted
value obtained from the bond operator theory [20].
Furthermore, the continuous slope of theM-H curve keeps
its convex shape until Hc2. It indicates that the critical
exponents can be potentially different betweenHc1 andHc2
because, otherwise, it is expected that M-H curve at Hc1
and Hc2 should present the particle-hole symmetry behav-
ior, i.e., the correspondences of the shapes at Hc1 and Hc2
are suppose to be linear versus linear, concave versus
convex, or convex versus concave. In order to interpret the
observed magnetization process in more detail, we have
tried to theoretically reproduce theM-H curve with a rather
simple spin model. The lattice Hamiltonians in previous
studies are complex and include several types of interdimer
interactions [18,20]. Let us consider the following spin
Hamiltonian to describe the universality classes aroundHc1
and Hc2:

Hspin ¼ J
X

i

Si;1 · Si;2 þ J1
X

i

X

m

X

n¼x;y

Si;m · Siþên;m

þ J2
X

i

Si;2 · Siþẑ;1 − gkμBH
X

i;m

Szi;m; ð2Þ

where i denotes the site of dimers in a cubic lattice, m ¼ 1,
2 shows the position of the two spins in one dimer, ên ¼
êx;y;z represents the unit vector. Here J denotes the intra-
dimer interaction, and J1;2 are interdimer interactions in
different directions. We have set two different interdimer
interactions J1 and J2, because it is necessary to fit and
reproduce the experimental M-H curve in Fig. 2 and their
values will be shown later. The assumed lattice for theHspin
is shown in the inset of Fig. 2. The QMC calculation is
performed using a generalized directed loop algorithm in
the stochastic series expansion representation [24], as
implemented in the ALPS package [25]. The calculation
is performed with 10 × 10 × 10 unit cells, in which each
unit cell contains two spin sites. Additionally, it has been
reported that the structure of TlCuCl3 is not magnetically
frustrated, although the low-symmetry structure results in
many triangle interaction terms in the Hamiltonian [18].
In Fig. 2, the magnetization curves simulated by the

QMC calculation are shown with the experimental data.
The simulated M-H and dM=dH curves based on the

FIG. 2. Comparison between the experimental magnetization
curve and the QMC simulation results, the low field data (below
40 T) is from Ref. [20], the blue and red curves are obtained from
Eq. (2) and Eq. (3), respectively. The upper inset shows the lattice
of spin Hamiltonian. The red and blue ball represent the spin site
1 and 2 of a dimer in Eq. (2), respectively. The middle inset shows
the symmetry presentation in magnetization from Eq. (3).
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Hamiltonian in Eq. (2) is represented with blue curve. The
g-factor 2.23 [19] is used in this simulation. The parameters
determined in this calculation are J ¼ 5.318, J1 ¼ 1.074,
and J2 ¼ 1.86 meV. In our reduced model, J and J2 agree
with those of the original model of TlCuCl3 in Refs. [18,20]
according to their spin configurations. These values are also
close to those reported in the previous work using the bond
operator method [20]. The simulatedM-H curve performed
at T ¼ 3.5 K is found to agree very well with the
experimental magnetization process.
The hard-core boson model constructed by only the

Sz ¼ 1 triplet and singlet states is another way to analyze
the process of magnetization. Following Jaime et al. [15],
we translate the spin Hamiltonian [Eq. (2)] to an effective
Hamiltonian of the hard-core boson:

Heff ¼ t1
X

i;α

ðb†iþên
bi þ b†ibiþênÞ þ t2

X

i

ðb†iþẑbi þ b†ibiþẑÞ

þ V1

X

i;α

niniþên þ V2

X

i

niniþẑ þ μ
X

i

ni; ð3Þ

where the chemical potential is μ ¼ J − gkμBH, and hop-
ping terms are t1 ¼ V1 ¼ J1=2 and t2 ¼ V2 ¼ J2=4. The
simulation shares the same interaction parameters with the
spin model. Based on this reduced model, we calculate the
magnetization and show the results with the red
dashed curve in Fig. 2. In contrast to the result of Hspin,
the magnetization derived from Heff shows the central
symmetry that relates the magnetizations around Hc1 and
Hc2, which corresponds to the particle-hole symmetry
shown in the middle inset of Fig. 2. However, in the
following, we will see that such a symmetry is not held
when the J2-interdimer interactions in Eq. (2) is significant.
As shown in Fig. 2, the magnetization gradually

increases with magnetic fields when the field approaches
to and exceeds Hc1, while the magnetization drastically
changes its slope at near the saturation field Hc2 in our
experiment. This behavior can be more clearly recognized
in the dM=dH curve; one can see that rather sharp peak
structure appears just below Hc2 and only a round shoulder
structure is seen in the vicinity of Hc1. This asymmetric
character of the magnetization indicates a sizable breaking
of the particle-hole symmetry.
In order to clarify the asymmetric character, we

utilize the following formula to perform the fitting of the
magnetization.

jM −Mcij ∝ jH −Hcijβi ; ði ¼ 1; 2Þ: ð4Þ

The breaking of the particle-hole symmetry can be
identified by comparing two critical exponents β1;2 [26]
around Hc1;2 in Eq. (4) since the particle-hole symmetry
implies β1 ¼ β2.
By analyzing our experimental data with the QMC

simulation, we can computationally determine the critical

exponents with the simulatedM-H curve [27]. We find that
β2 is robustly localized at 0.91. Here β1 ∼ 1.4 is also
obtained in the same analysis but using the experimental
results obtained with a nondestructive magnetic field [20].
The amount of the difference between β1 and β2 directly
measures the degree of the asymmetry, and the difference
has been found to depend on the degree of the interdimer
coupling (itinerancy of the triplons). We have conducted an
analysis of the dependence of the exponents β1;2 on the
interdimer exchange interaction J2. In the procedure
for the determination of β1;2, we define field windows
x1;2 ¼ ðH −Hc1;2Þ=ðHc2 −Hc1Þ, which the data used
should be within [11]. The accuracy of the fitting process
can be confirmed by the stability of the obtained value
when we change the field window. The fittings are
performed under x1;2 ¼ 0.1, 0.15, and 0.2. All the obtained
exponents are plotted as a function of J2=J in Fig. 3. The
range of J2=J is set from 0.18 to 0.35. As shown in Fig. 3,
β1 gradually increases with J2=J while the value of β2 is
more robust. The resulting J2 variations of β1 and β2 show
similar behavior at 3.5 and 1 K, indicating that the
qualitative dependence of the critical exponents on the
effects of the interdimer interaction is not affected by
changing temperature from 1 to 3.5 K.
The differences between β1 and β2 are reflected by the

convex slope of the magnetization around Hc1 and Hc2 as
in Fig. 2; the initial magnetization process is suppressed
compared to a linear magnetization while the slope
increases when approaching the saturation, resulting in
the larger β1 than β2.
In the bond operator theoretical formalism, the magnet-

ism around Hc1 is contributed to by the outset of lowest-
triplet j↑↑i, namely, Sz ¼ 1 condensations driven by the
vanishing spin gap. In the pure-dimer limit J ≫ J1;2, the
other two higher-energy local excitations ðj↑↓i þ j↓↑iÞ
and j↓↓i can be neglected since they hardly affect the

FIG. 3. βi (i ¼ 1, 2) as a function of J2=J with fixed
J1=J ¼ 0.201. The determination is performed with simulated
M-H curves at 3.5 and 1 K. Circles and squares present β1 and β2,
respectively.
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low-temperature physics. However, a finite J2 interaction
can mediate a four-particle interaction that accumulates
highest-triplet j↓↓i excitations in the presence of a partial
lowest-triplet condensation and singlet condensation [18].
Therefore, j↓↓i excitations suppress the magnetization
from the j↑↑i condensations when H ≳Hc1. When the
magnetic field increases beyond Hc1, such a suppression
eventually becomes inefficient due to a large Zeeman gap to
excite a j↓↓i quasiparticle and is negligible near Hc2.
Therefore, we have the increasing deviation of β1 from β2
as shown in Fig. 3. The convex shape of the M-H curve at
around Hc1 can be understood in the same way. Moreover,
it is found that β2 is consistently insensitive to a changing of
J2=J. In short, the deviation of β1 from β2 is attributed to
the strength of J2-interdimer interactions. Therefore, it can
be concluded that the particle-hole symmetry in the hard-
core boson picture [Eq. (3)] is broken in TlCuCl3 due to the
strong higher-order terms through the interdimer inter-
actions. Here, it should be noted that the similar interdimer
effect is also obtained by increasing J1 instead of J2. The
hybridization of the four-particle states becomes relevant
when J1 or J2 (or both) is (are) sufficiently large.
Such a particle-hole symmetry breaking has been

observed in another spin-1=2 dimer system [28]. In that
case, the origin of the asymmetry is claimed to be due to a
zero-point quantum fluctuation characterized by the addi-
tional zero-point energy to quasi-particle excitations [29],
which should be significant in low-dimensional systems.
However, such a quantum fluctuation in low dimensions is
expected to be insignificant in TlCuCl3 because the spin
system is almost three-dimensional [30].
Furthermore, due to the insignificance of higher-energy

triplet excitations around the saturation, it can be expected
that the H-T phase boundary around Hc2 obeys a power
law gjHs −Hc2ðTÞj ∝ Tα (Hs: the saturation field strength
at zero temperature) closer to the HFP approximation
α ¼ 1.5 [3] than that regarding Eq. (1) around Hc1. It
implies that the strong interdimer interactions contribute to
a remarkable dispersion in the dimer spin system. This
dispersion can be understood by magnon-magnon or hole-
hole interaction in a boson system. Thus we have proved
that the dispersion of the particle manifests itself in the
asymmetric convex magnetization process, which indicates
that a precise measurement of the magnetization can give us
the microscopic nature of magnons in some particular
magnets.
In summary, we have measured the magnetization

process of TlCuCl3 at 2 K and the second critical magnetic
field Hc2 to be 86.1 T. The magnetization process shows
a continuous convex slope and we analyze the critical
exponents of magnetization atHc1 andHc2. A Monte Carlo
calculation based on cubic lattice well reproduces the
experimental results and strongly supports the itinerant
property of magnons in TlCuCl3. The particle-hole
symmetry has been revealed to be broken in TlCuCl3.

We have also found that the degree of asymmetry of
magnetization process increases with the interdimer inter-
actions by a numerical analysis with the QMC method.
Thus, such interactions play an essential role in magneti-
zation of various spin dimer systems.
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