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We examine the spectroscopic signatures of tunneling through a Kitaev quantum spin liquid (QSL)
barrier in a number of experimentally relevant geometries. We combine contributions from elastic and
inelastic tunneling processes and find that spin-flip scattering at the itinerant spinon modes gives rise to a
gapped contribution to the tunneling conductance spectrum. We address the spectral modifications that
arise in a magnetic field, which is applied to drive the candidate material α-RuCl3 into a QSL phase, and we
propose a lateral 1D tunnel junction as a viable setup in this regime. The characteristic spin gap is an
unambiguous signature of the fractionalized QSL excitations, distinguishing it from magnons or phonons.
We discuss the generalization of our results to a wide variety of QSLs with gapped and gapless spin
correlators.
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Introduction.—Geometric frustration of localized spins
can suppress magnetic order and favor the formation of a
quantum spin liquid (QSL) state, which is characterized by
a macroscopic ground state of entangled quantum spins
with absent long-range order [1]. The spin degree of
freedom of a QSL state can fractionalize into a set of
anyonic excitations, where the exactly solvable Kitaev
model on a honeycomb lattice predicts the emergence of
localized, gapped Z2 fluxes and an itinerant, relativistic
Majorana spinon mode [2]. When time reversal symmetry
is broken, e.g., by a magnetic field, the bulk spinon
spectrum is further expected to acquire a topological mass
gap, giving rise to emergent 1D chiral Majorana edge
modes. Their non-Abelian quantum statistics could present
avenues for implementing topologically protected quantum
computation [3], whose prospect promotes today’s intense
research efforts on this topic [4–7].
Experimental evidence for these emergent quasiparticles is

rare [8–11]. The search for material realizations of the Kitaev
model has focused on Mott-Hubbard systems with partially
filled t2g levels and strong spin-orbit coupling [4]. Examples
encompass the iridates with effective spin-1=2 moments on a
honeycomb lattice and bond directional Kitaev interactions.
While many of these compounds were found to exhibit long-
range magnetic order [12], hydrogen intercalation appears to
stabilize a QSL [13]. The layered transition-metal trihalide
α-RuCl3 [14], with similar properties to those of the iridates,
has been gaining traction as a candidate Kitaev QSL material.
Most prominently, recent results from neutron scattering on
this compound suggest a magnetically disordered state
[15,16], consistent with the observation of a half-integer
thermal quantum Hall effect at finite magnetic fields [17]
—a telltale sign of a chiral Majorana boundary mode [2].

Nevertheless, the chargeless character of these emergent
quasiparticles and the electrically insulating nature of QSL
limit the range of suitable measurement techniques and, in

FIG. 1. (a) 2D planar tunnel device geometry; a single- or few-
layer QSL material is sandwiched between two metallic 2D
electrodes, e.g., graphene [19,23]. The tunnel current I measured
as a function of the applied bias voltage V provides insight on the
contributing tunnel processes. (b) 1D pincher gate geometry; a
lateral 1D tunnel junction geometry can be created on top of a
QSL bulk crystal. A pincher gate can induce an electrically
insulating region in a suitable electrode material, e.g., bilayer
graphene [25] with a displacement field, by applying a voltage
VP to serve as a 1D tunnel barrier. (c) Zero-dimensional tunnel
junction between an STM tip and an electrically conducting
substrate, which supports a monolayer QSL material on its
surface. (d) Illustration of the relevant tunnel processes in a
M-QSL-M geometry. The electron can tunnel either elastically
with amplitude tx or inelastically with amplitude Jx, undergoing
spin-flip scattering at the fractionalized spin degree of freedom of
the QSL.
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particular, render their detection in electrical transport
measurements challenging [18].
Previous experiments in planar junctions made from

exfoliated 2D materials established a new means to inves-
tigate atomically thin magnetic insulators, by using them as
tunnel barriers between two graphite electrodes [19,20].
Considering the electrically insulating behavior of QSL
materials, this concept can be naturally extended to probe
their charge-neutral quasiparticle excitations. The tunneling
electron can undergo inelastic spin scattering at the
fractionalized spin states of the QSL, potentially leaving
distinct spectroscopic fingerprints in its tunneling charac-
teristics, while its charge degree of freedom participates
only in the creation of electron-hole pairs at the electrodes.
From a practical perspective, the QSL candidate α-RuCl3
can be exfoliated into the monolayer limit [21,22] and
offers direct avenues to explore inelastic spin scattering at
the Majorana spinon mode in similar planar device struc-
tures [23]. However, little is known about the influence of
the tunnel junction geometry, the electronic properties of
the metallic leads on this inelastic spin scattering and,
most importantly, under which circumstances this process
produces a signal strong enough to be detected in an
experiment.
In this Letter, we methodologically investigate the general

spectroscopic tunneling characteristics of M-QSL-M tunnel
junctions, which are formed between two metallic electrodes
(M) separated by a thin, electrically insulating QSL
barrier, in different experimentally relevant geometries
[Figs. 1(a)–1(c)]. For our theoretical analysis, we consider
a single-layer Kitaev QSL as the tunnel barrier and
develop the full dc and ac bias voltage-dependent tunnel
conductance expressions, including both scalar and spin-flip
contributions, as a function of the QSL spin structure
factors [24]. For all investigated junction geometries, we
find that spin-flip scattering at gapless Majorana spinon
modes yields unique features in the electron tunneling
spectra that can be detected in experiments.
Model.—A simple physical model to describe the

M-QSL-M junctions presented in Fig. 1 is given by
H ¼ Hleads þHtun þHQSL, where

Hleads ¼
X

ξ¼1;2

X

σ

Z
d2k
ð2πÞ2 c

†
k;σ;ξ½ϵðkÞ − μ�ck;σ;ξ; ð1aÞ

Htun ¼
X

x

X

σ;σ0
½txδσσ0 þ Jxσ⃗σ;σ0 ·

ˆS⃗ðxÞ�

½c†x1σcx2σ0eieVt þ H:c:�: ð1bÞ

Hleads describes the leads, Htun the tunnel process, and
HQSL the QSL serving as the tunnel barrier. The index
ξ ¼ 1, 2 labels the leads, x runs over the lattice sites of the
quantum magnet, ˆS⃗ðxÞ is the spin operator of the QSL at
site x, and σ⃗ denotes the spin of the tunneling electron.

The first (second) term tx (Jx) in the tunneling matrix
elements stems from electrons passing through the QSL
without affecting the spin configuration (while creating a
spin flip) at site x [Fig. 1(d)]. When the QSL material is
placed on a metallic substrate, one may also expect Kondo-
like spin-spin interactions with the electron in the under-
lying metals. We neglect such interactions, because the
vison gap in Kitaev materials prevents a weak coupling
Kondo effect [26,27].
Here, we study three experimental setups: First, we study

planar 2D to 2D tunneling tx ¼ t0; Jx ¼ J0 across the
M-QSL-M junction [Fig. 1(a)]. Second, we study a one-
dimensional tunneling constriction tx ¼ t0δx;0; Jx ¼ J0δx;0
[Fig. 1(b)]. Without a magnetic field, this setup corresponds
to lateral tunneling between two-dimensional electron
gases (2DEGs), but in the presence of a sufficiently strong
field it represents tunneling between quantum Hall edge
states. Third, we consider a zero-dimensional point contact
tx ¼ t0δx;0; Jx ¼ J0δx;0 [Fig. 1(c)], which describes the
physics of a classic scanning tunneling microscope (STM)
experiment.
As the physical process of tunneling through a

Mott-insulating material involves the virtual double
occupancy of sites, superexchange generically leads to
[28] Jx ∼ tx ∼ V2=U, where V is the hybridization between
the conduction electrons of the leads and the localized
electrons in the QSL and U is the Mott-Hubbard gap of the
latter. Hence, the elastic and inelastic tunnel probabilities
are of comparable magnitude: tx=Jx ∼ 1. In the case of the
1D tunneling barrier [Fig. 1(b)], tx may, however, acquire
an additional contribution from direct tunneling between
the leads, in which case jtxj ≫ jJxj.
For the analytical study of tunneling through a QSL

state, we mostly focus on the case of the exactly
solvable Kitaev model [2] in the isotropic limit; in this
case,

HQSL ¼ K
X

i¼x;y;z

X

hx;x0ii
ŜiðxÞŜiðx0Þ: ð1cÞ

The interactions of the Kitaev model K are bond-directed
Ising interactions, as displayed in Fig. 1(d).
We conclude this section by listing the assumptions

behind our calculations: We consider the limit when the
Fermi wavelength λF of the metallic leads exceeds the
lattice constant a of the magnet such that a continuum
treatment of the leads is justified. Except the case of the
STM tip electrode in Fig. 1(c), it is furthermore important
that the leads are strictly two dimensional, as realized in
graphene-based experimental setups [19]. Finally, we
disregard umklapp scattering in the section on planar
tunneling, which is a good approximation when the unit
cell of the magnet equals or exceeds the unit cell of the
materials at the leads (this is the case, e.g., for α-RuCl3 and
graphene [37]).
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Tunneling current.—The leading-order tunneling current
I ¼ Iel þ Iinel is given by contributions from elastic (Iel)
and inelastic (Iinel) tunneling processes, respectively. The
first contribution to the current reflects the standard tunnel
current across the junction:

Iel ¼ 2π
e
h

X

x;x0
txtx0 ½A1†2

x;x0 ðeVÞ − 1 ↔ 2�: ð2aÞ

We denote the spectral weight of a particle-hole pair with a
particle (hole) in electrode 1 (electrode 2) by A1†2

x;x0 ðEÞ,
where E ¼ eV is the energy and V is the bias voltage across
the junction. The current presented in Eq. (2a) can be
interpreted as a difference of Fermi golden rule rates, where
the matrix element is encoded in the spatial dependence
of tx;A1†2

x;x0 ðEÞ.
We now address the inelastic contribution to the tunnel

current, which can be expressed as [38,39]

Iinel ¼ e
h

X

x;x0

Z
dEJxJx0 fAspin

x;x0 ðeV − EÞA1†2
x;x0 ðEÞ

× ½nðeV − EÞ − nðEÞ� − 1 ↔ 2g: ð2bÞ

Analogously to Eq. (2a), the inelastic current is generated
by the creation of particle-hole pairs with charges on
opposite sides of the junction. In contrast to the scalar
contribution, Iinel corresponds to inelastic scattering: The
electrons deposit energy into the spin system during the
tunneling process (both spin-conserving and spin-flip
processes are included). This amplitude is weighted by
the difference in occupation of the spin and particle-hole
modes [nðEÞ is the Bose-Einstein distribution] and, most
importantly, by the spectral weight of the spin excitations
Aspin

x;x0 ðEÞ ¼ −2ImCþðx;x0;EÞ, where

Cþðx;x0; t; t0Þ ¼−iθðt− t0Þ
X

i¼x;y;z

h½Ŝiðx; tÞ; Ŝiðx0; t0Þ�i: ð3Þ

In the following, we focus on QSLs in which the retarded
spin susceptibility Cþðx;x0; t; t0Þ ¼ Cþðx − x0; t − t0Þ
decays at least exponentially in space. This applies to
gapped QSLs as well as to the integrable Kitaev model.
When the correlation length is small as compared to the
Fermi wavelength, the inelastic contribution to the differ-
ential tunnel conductance dIinel=dV at zero temperature
can, therefore, be simplified to [28]

dIinel

dV
¼−G0

X

x;x0

JxJx0

t20

Z
eV

0

dE
2π

ImCþðx−x0;EÞ: ð4Þ

Here, G0 ∝ t20 is the dimensionless conductance of a point
contact [28]. The integral in Eq. (4) is largely independent
of the tunnel junction geometry, and it can be evaluated on
the basis of the short-ranged spin correlator ImCþðx;x0;EÞ.

In the specific case of the Kitaev spin liquid, where
ImCþðx;x0;EÞ can be derived analytically [24,28,29], only
on-site and nearest-neighbor correlators are nonzero [29]
[Fig. 2(a)]. The gap ∼0.26 K in the spectrum is a
manifestation of absent spin order, and it results from
creating virtual excitations of the Z2 gauge field (“visons”).
Beyond this excitation gap, the continuum of Majorana
spinons appears as a broad hump. The prefactor to the
integral in Eq. (4) depends on the tunnel-junction geometry,

FIG. 2. (a) Short-ranged dynamical spin susceptibility
Im½CþðωÞ� [24,29] as a function of frequency ω, normalized
by the Kitaev interaction K. (b)–(d) Calculated dI=dV spectra for
electron tunneling across junctions of different geometries at
different J0=t0 ratios as a function of the applied bias voltage V.
The case of purely elastic electron tunneling corresponds to
J0=t0 ¼ 0. The inset in (b) depicts the mismatch between the
Fermi surfaces SF;1 and SF;2 between the electrode 1 and 2,
respectively, at V ≠ 0.
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and it acquires a scaling ∼Ld (L denotes the size and d the
dimension of the junction), due to the sum over the mean
positions.
We plot the calculated dI=dV spectra in Fig. 2, con-

taining both elastic and inelastic contributions, for the
different device geometries in Figs. 1(a)–1(c). These
spectra were obtained for λF=a ¼ 2π, EF=K ¼ 2.5, and
Γ=K ¼ 1=1000, where EF (Γ) is the Fermi energy (quasi-
particle decay rate), and for different values of the tunnel
coupling ratio t0=J0 (for other values of EF=K, see
Ref. [28]). In Fig. 2, we present results for the dc tunneling
experiment only; yet it bears noting that we obtain
qualitatively similar characteristics for the ac tunneling
conductance Re½GðΩÞ� [28], whose properties could be
probed using terahertz techniques [40,41].
Discussion of M-QSL-M setups.—The comparison of

calculated dI=dV spectra in Figs. 2(b)–2(d) shows that
inelastic electron scattering off the itinerant spinon mode
yields a gapped finite contribution to the dI=dV spectrum
with an onset at eV ≈ 0.26 K (for α-RuCl3, K ∼ 10 meV
[37,42]). A closer inspection, however, reveals that the
relative contribution of this inelastic channel to the total
tunnel conductance varies significantly between the respec-
tive tunnel junction geometries, as we discuss below.
Planar 2D tunnel junctions [23], with metallic 2DEGs as

the electrodes [Fig. 1(b)], appear particularly well suited
for the investigation of the spin-flip tunneling process.
At J0=t0 ≠ 0, Iinel contributes a prominent bump with an
onset at finite voltage in the dI=dV spectrum. The elastic
channel (cf. the curve at J0=t0 ¼ 0) remains largely sup-
pressed at V ≠ 0. Owing to the mismatch of Fermi surfaces
in the top and bottom electrodes, momentum and energy
conservation cannot be fulfilled simultaneously at V ≠ 0
[cf. the inset in Fig. 2(b)]. Therefore, Iel=V is a Lorentzian
peak of width Γ, which is centered at V ¼ 0, and dIel=dV is
small and negative at finite bias voltages [43].
The lateral 1D tunnel junction geometry [Fig. 1(b)]

shows fundamentally different dI=dV-spectrum character-
istics [Fig. 2(c)]. A benefit of this geometry is the
possibility to place the tunnel electrodes directly on the
surface of bulk crystals, which likely expands the range of
material candidates, as it circumvents challenges related to
monolayer exfoliation and unwanted doping [22,44].
However, the dominant logarithmic contribution to the
dI=dV spectrum originates from elastic tunneling between
the 2DEGs, whereas the contribution from spin-flip tun-
neling is comparably small.
The third geometry, a 0D tunnel junction, can be formed

between an atomically sharp tip of a scanning tunneling
microscope and a 2D metallic substrate, which supports
the thin QSL material layer [Fig. 1(c)]. Atomic-scale
resolution combined with the ability to distinguish spectral
features of the surface from the edge has inspired recent
proposals to study QSL spinon modes and chiral Majorana
edge modes in such STM setups [45,46]. Nevertheless,

Fig. 2(d) illustrates that a significant spinon-induced bump
on top of the constant dIel=dV spectrum develops only for
Jx=tx ≳ 1. On the other hand, the continuous tunability of
the STM tip-sample distance could serve as a valuable
tuning knob to test the evolution of this spectral feature as a
function of the STM tunnel junction transparency. Hence,
inelastic tunneling with an STM could present an attractive
experimental approach, not least in view of the recent
advances in epitaxial growth of the non-Kitaev QSL
candidate materials 1T-TaS2 and 1T-TaSe2 [47–52].
Quantum Hall regime.—Up to now, we considered

experimental scenarios, in which the electrodes, except
for the case of a STM geometry, can be described by a
metallic 2DEG. However, in the case of α-RuCl3, a strong
out-of-plane magnetic field may be applied to engender the
putative QSL state [17] and induce Landau quantization in
the 2D electrodes, which has a profound influence on the
spectral tunnel characteristics for the 2D and 1D tunnel
junction geometry; cf. Figs. 1(a) and 1(b). Previous experi-
ments on 2D planar tunnel junctions show that Landau-
level spectra in 2D graphene electrodes results in a complex
dI=dV spectrum [19], which presumably renders the
observation of tunneling signatures of Majorana spinons
[23] challenging.
By contrast, we establish the case of the 1D lateral tunnel

junction in the presence of quantum Hall (QH) edge states
as a setup which favors the detection of inelastic spin-flip
scattering in the dI=dV spectrum [Fig. 3(a)]. In the limit of
K=ωc ≪ 1, when the cyclotron frequency ωc exceeds the
Kitaev coupling, tunneling between the chiral edge modes
in both junction electrodes [Fig. 3 (inset)] results in a
constant tunnel current Iel ∝ G0LsgnðeVÞ [28,30]. Hence,

FIG. 3. (a) Calculated dI=dV spectrum for electron tunneling
between 1D chiral quantum Hall edge states across a 1D tunnel
junction for different J0=t0 ratios as a function of the applied bias
voltage V. The case of purely elastic electron tunneling corre-
sponds to J0=t0 ¼ 0. Inset, top: Momentum space diagram of the
chiral edge states of LL1;N¼1 and LL2;M¼1 with and without an
applied bias V. Inset, bottom: Real space energy diagram in the
quantum Hall regime (denoted LL1;N and LL2;M , where N andM
are Landau-level indices) of the two tunneling electrodes 1 and 2,
respectively.
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for the QH-QSL-QH tunnel junction, the entire spectral
weight in the dI=dV spectrum (Fig. 3 at V ≠ 0) arises from
inelastic scattering off the spinon modes, providing a strong
experimental signature.
Conclusion.—In this Letter, we have presented an

extensive comparative study of tunneling signatures for
variousM-QSL-M junction geometries. The distinguishing
feature of tunneling across a Kitaev QSL is the observation
of a spectral gap and a subsequent bump in the dI=dV
spectrum at small bias voltages, which is induced by
inelastic spin scattering off the fractionalized spinon mode.
These features are most strongly pronounced both for
tunneling across planar 2D junctions [Fig. 2(b)] and for
tunneling across a lateral 1D junction, with the electrodes in
the quantum Hall regime (Fig. 3). Albeit we considered
the exactly solvable Kitaev model for the QSL [2], the main
results of our analysis can be generalized to other
QSL materials as follows: For gapped QSLs with suffi-
ciently short-ranged spin correlations, the current response
[Eq. (4)] holds independently of the kind of transport setup
presented in Fig. 1. In contrast, Eq. (4) applies only to the
0D STM junction in the case in which the spin correlations
are algebraic [53]. This occurs, for example, in the presence
of a spinon Fermi surface, which is potentially relevant for
1T-TaS2 [54], and is left for future studies.
Using the generally applicable Eq. (2), we here

discuss realistic Kitaev materials containing, weak
Heisenberg interactions, in addition to Eq. (1c) as another
example for QSLs with algebraic correlations [31,55]. The
prefactor of these power laws is parametrically smaller
than the correlations above the vison gap [Fig. 2(a)]. This
results in a small low-voltage signal dIinel=dV ∼ V4

(dIinel=dV ∼ L2V3) in STM (planar) tunneling experiments
[28], while the signal substantially increases above the
vison gap; cf. Figs. 2(b) and 2(d).
We differentiate this behavior from the tunneling

signatures of phonons and magnons, and we conclude
with a direct comparison to a 2D planar metal-antiferro-
magnet-metal junction. We concentrate on fluctuations
about a Néel state on a hexagonal lattice [28], for which
the linear magnon spectrum leads to a cubic inelastic
tunneling current Iinel ∼ V3. Contrary to the QSL case,
this results in a smooth, quadratic contribution to the dI=dV
spectrum at small bias voltages in the absence of an applied
magnetic field; see [28].
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Note added.—Recently, we became aware of related work
that focuses on the specific case of a 0D STM junction [46].
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