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We theoretically investigate the dynamics of magnetic hedgehogs, which are three-dimensional
topological spin textures that exist in common magnets, focusing on their transport properties and
connections to spintronics. We show that fictitious magnetic monopoles carried by hedgehog textures obey
a topological conservation law, based on which a hydrodynamic theory is developed. We propose a
nonlocal transport measurement in the disordered phase, where the conservation of the hedgehog flow
results in a nonlocal signal decaying inversely proportional to the distance. The bulk-edge correspondence
between the hedgehog number and skyrmion number, the fictitious electric charges arising from magnetic
dynamics, and the analogy between bound states of hedgehogs in ordered phase and the quark confinement
in quantum chromodynamics are also discussed. Our study points to a practical potential in utilizing
hedgehog flows for long-range neutral signal propagation or manipulation of skyrmion textures in three-
dimensional magnetic materials.
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Introduction.—A main theme of spintronics is the
utilization of spin degrees of freedom for information
transmission and processing [1,2], either using spin-
polarized electric currents, or relying on spins alone to
free the transport from Joule heating. Magnons, the quanta
of spin waves, have been proposed to be promising data
carriers in new computing technologies [3–7]. A detectable
diffusive spin transport can be achieved via magnons in
ordered magnetic insulators [8] or even spin-conserving
fluctuations in paramagnets [9]. However, such spin cur-
rents typically decay exponentially, once the propagation
distance exceeds the spin-relaxation length [2]. In alter-
native transport regimes, where signals are expected to
decay algebraically, topology plays a crucial role [10–12].
Topological spin textures, such as chiral domain walls [13],
vortices [14–17], skyrmions [18–20], hopfions [21,22],
and hedgehogs [23–26] are defined homotopically and are
topologically protected [10–12]. Consequently, they are
promising to sustain long-distance transport, even in the
absence of local spin conservation.
While extensive studies have been devoted to spin

textures in low dimensions, three-dimensional (3D) tex-
tures such as hedgehogs and hopfions are recently attract-
ing more attention for their rich physics in topological
phases [23–26] and dynamic properties [21,22,27,28].
Hedgehogs exist inherently in 3D Heisenberg magnets.
In contrast to 3D skyrmions [29] and hopfions [21,22],
which can be annihilated by shrinking them down to
the size of the atomic spacing without affecting spins far
away, hedgehogs cannot be removed via local surgeries.
The hedgehog flow can therefore be more stable against
thermal fluctuations, and has potential applications in
memory, logic devices, and energy storage [30–35].

In this Letter, we explore both topological and energetic
properties of magnetic hedgehogs in 3D Heisenberg
ferromagnets to investigate their long-distance transport,
the viability of which is considered from the following
three aspects. A topological conservation law, which is
valid in both the magnetically ordered and disordered
phase, defines the framework of a hydrodynamic descrip-
tion of hedgehog currents. While (anti)hedgehogs are
bound by a linear potential energy in the magnetically
ordered phase, they become deconfined and hence mobile
in the paramagnetic phase. We propose a nonlocal transport
measurement in the setup as shown in Fig. 1. A conserved
hedgehog flow can be driven by a transverse electric
current applied at an adjacent metal contact, resulting in
a nonlocal signal decaying inversely proportional to the
system length in the flow direction.
Topological conservation law.—Let us first consider a

3D insulating ferromagnet without accounting for its
detailed energetics, but focusing on topological aspects
of its vectorial order parameter nðr⃗; tÞ, where the bold face
is used for axial vectors and the vector arrow marks polar
vectors. In the ordered phase, the collinear magnetic order
can be described by the directions of n assuming jnj ¼ 1.
This would render a sphere order-parameter space S2, with
a nontrivial second homotopy group π2ðS2Þ ¼ Z [36]. A
point defect, named hedgehog, with an integer-valued
topological charge can correspondingly be identified in
nðr⃗; tÞ. A familiar example for a hedgehog placed at the
origin is n0 ¼ fx; y; zg=jr⃗j.
In the paramagnetic phase, the corresponding (coarse-

grained) vector field nðr⃗; tÞ ∈ R3 realizes an R3 → R3

mapping at any given time t. This field texture is devoid of
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defects characterized by the aforementioned quantized
charges, since the homotopy group π2ðR3Þ is trivial [36].
Nevertheless, the smooth field nðr⃗; tÞ exhibits a topological
hydrodynamics governed by the topological conservation
law ∂μjμ ¼ 0 (with the Einstein summation implied over the
Greek indices: μ ¼ 0; 1; 2; 3 ↔ t; x; y; z), where

jμ ¼ ϵμναβ∂νn · ð∂αn × ∂βnÞ=8π: ð1Þ

Here, ϵμναβ is the Levi-Civita symbol with convention
ϵ0123 ¼ 1. The conserved (topological) charge within a
bulk Ω is

Q≡
Z
Ω
dxdydzj0 ¼ 1

8π

Z
∂Ω

dxj ∧ dxkn · ð∂jn × ∂knÞ;

ð2Þ

which equals the skyrmion number at boundary ∂Ω,
according to the generalized Stokes’ theorem [36]. We
recognize that charge Q is precisely the hedgehog number
(thus jμ is the hedgehog current) in the ordered phase, with
the last equality in Eq. (2) defining the degree of the S2 → S2

mapping on the boundary. Our simple example n0 yields
j0 → δðr⃗Þ and thus Q ¼ 1. Here, we remark that the core
should be regularized. There is no true singularity in our
treatment. In the paramagnetic phase, Q is no longer

quantized due to fluctuations in the magnitude of n.
Regardless, the hedgehog current, Eq. (1), is conserved
[37], which sets the stage for the topological hydrodynamics
of hedgehogs at an arbitrary temperature. The conservation
law also holds in the lattice limit, with proper discretized
definitions [37]. Hereafter, we refer to jμ ¼ ðj0; jÞ as
hedgehog density (and flux), irrespective of the temperature.
We stress that, in contrast to two-dimensional skyrmions

[18–20] or three-dimensional Shankar skyrmions [29],
which can be created and annihilated locally, the conser-
vation law of hedgehogs is immune to local fluctuations
and therefore applicable also in the paramagnetic phase
[37]. This robustness of hedgehog flow underpins the
hedgehog hydrodynamics.
Equation (2) establishes a bulk-edge correspondence,

indicating that the total hedgehog number in a bulk interior
can fluctuate only by flowing in and out through its
boundary. This, in turn, is associated with a corresponding
change in the skyrmion number on the boundary, acting as
a fingerprint of the hedgehog flow. A close analog in lower
dimensions has been thoroughly studied in the context of
superfluid phase slips, where the winding number asso-
ciated with one-dimensional XY textures can be changed
by a transverse passage of planar vortices. The 3D bulk-
edge correspondence Eq. (2) manifests when a skyrmion
density unwinds or reversely builds up as a thread of a
hedgehog current passes through, which has been verified
experimentally [41].
Topological Maxwell equations.—We provide, in this

section, another formulation of the conservation law as
topological Maxwell equations, making connections to the
well-known emergent electromagnetic fields associated
with generic spin textures [42–48]. The divergence-free
condition ∂μjμ ¼ 0 can be automatically satisfied by
defining the current jμ as a curl of a rank-2 antisymmetric
Maxwell field-strength tensor

F αβ ≡ n · ð∂αn × ∂βnÞ=4π; ð3Þ

whose components are the familiar electromagnetic fields:

Ei ¼ n · ð∂tn × ∂inÞ=4π; ϵijkBk ¼ n · ð∂in × ∂jnÞ=4π:
ð4Þ

The hedgehog current Eq. (1) can therefore be recast into
the form of the Maxwell equations:

ϵμναβ∂νF αβ=2 ¼ jμ; ∂μF μν ¼ jνe: ð5Þ

The second equation defines the electric four-current,
which is also conserved: ∂μj

μ
e ¼ 0, following from the

antisymmetric property of F .
Note that fictitious electric and magnetic charges (as

sources for E⃗ and B) have the same symmetries as the real

FIG. 1. A schematic for nonlocal transport measurement of
hedgehog currents in a three-dimensional insulating magnet. Two
metallic contacts are bridged by a magnetic insulator with hedge-
hog excitations. In the paramagnetic phase, hedgehogs are free to
diffuse, where black and white ripples stand, respectively, for
delocalized hedgehog and antihedgehog densities. An applied
electric current I along y within the left metal transfers spin flow
into the magnetic texture, which biases a hedgehog flow along x.
Reciprocally, the hedgehog flow reaching the right terminal builds
up a detectable electric voltage V. The nonlocal drag resistivity,
ϱ ∝ V=I, quantifies the efficiency of the topological hedgehog
transport as well as their interfacial exchange coupling with
conducting electrons. We also show a familiar example of a
hedgehog n0 ¼ fx; y; zg=r.
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electric and magnetic charges under both time-reversal and
parity operations. The magnetic hedgehog with a quantized
topological charge can be identified as a Dirac monopole.
In the ordered phase, the quantization can also be under-
stood from the view of the U(1) gauge structure of
magnons. For a Heisenberg magnet, one may regard a
fixed spin texture nðr⃗Þ to spontaneously break the SU(2)
symmetry of the spin algebra. The excitations thus have a
smooth part, which can be viewed as describing regular
spin waves, and a (singular) topological part, such as
hedgehogs in our case. Therefore, the magnetic charges
are quantized on a U(1) kernel [42,45,49], reminiscent of
the ’t Hooft and Polyakov approaches to the non-Abelian
Higgs model [50]. For the (fictitious) electric sector, both
the electric field and the electric charge density emerge
solely out of the dynamics of the field configuration.
According to the Gauss law, the total electric charge
associated with a general local dynamics vanishes (see
Supplemental Material [37] for electric charge distributions
resulted from global dynamics). We restrict our discussion
hereafter to the magnetic part.
Confinement and deconfinement.—We now turn to

the energetics and physical dynamics of hedgehogs in
Heisenberg magnets. Hedgehogs are confined in the
ordered phase, with the potential energy of a hedgehog-
antihedgehog pair growing linearly with their separation
[51]. One can imagine a string of tension 4πA tying them,
where A is the exchange stiffness of the magnetic material
[see Eq. (6) below]. The confinement is also expected from
evaluating the potential energy of a single hedgehog,

U ¼ 4πAR; ð6Þ

where R is the size of the system. One can directly check
this for n ¼ n0 placed at the origin of a sphere of radius R.
For a hedgehog-antihedgehog pair, all flux from the
hedgehog must end at the antihedgehog, forming a flux
tube to minimize the energy. Such a system could realize an
experimentally accessible analogy to quark confinement in
QCD [52,53].
In the paramagnetic phase, hedgehogs deconfine natu-

rally due to the absence of long-range correlations.
Conceptually, the transition to the magnetically disordered
phase can be thought of as a result of proliferation of
hedgehogs, which form a two-component hedgehog-
antihedgehog plasma (while topological charges are no
longer quantized) as illustrated in Figs. 1 and 2. This
extends our analogy with the QCD picture: Quarks decon-
fine and form a so-called quark-gluon plasma at high
temperatures where the chiral symmetry is restored and
long-range correlation is melted away [54–57]. The hedge-
hog system is therefore a promising alternate to study
QCD theories in condensed matter systems. Previously
considered was the magnetic monopole confinement in
superconductors due to the Meissner effect [58–62], where

monopoles enter a deconfined phase as the temperature
increases, accompanying the superconductor-insulator
transition.
We remark that hedgehogs are not always energy-costly

excitations as in Heisenberg magnets. MnSi1−xGex has a
stable phase of a hedgehog-antihedgehog lattice [23–25],
where there is evidence that four- and six-spin interactions
may play an important role [63–65]. Here, we formally
adopt a nonlocal term, which is particularly compatible
with our fictitious electromagnetic formalism, into our
Heisenberg Hamiltonian:

U ¼
Z

d3r⃗

�
A
2
ð∇⃗nÞ2 þ C

2
ð∂in × ∂jnÞ2

�
; ð7Þ

where Einstein summation is implied over the i, j and C is a
phenomenological parameter. Other quartic terms, such as

ð∇⃗nÞ4, are also present in principle, but the above C term
is of special interest to us. It resembles the Maxwell
magnetic field energy ∝ B2 (in the ordered phase, s.t.
jnj ≈ 1). The total potential energy for a hedgehog is thus
U ∼AR − C=R, which indicates that hedgehogs are free
at a small distance r ≪

ffiffiffiffiffiffiffiffiffi
C=A

p
, where the Coulombic term

dominates. This phenomena mimics the asymptotic free-
dom in QCD [52,53]. Likewise, in a system of small size,
the hedgehog confinement becomes insignificant whenffiffiffiffiffiffiffiffiffi
C=A

p
is comparable to R.

Biased hedgehog flow.—At the heart of the hedgehog
transport is the (desired) capability of driving and manipu-
lating the hedgehog current. We focus on the dynamics near
the Curie temperature of a ferromagnet, where the hedge-
hogs get deconfined, while the thermal fluctuations are still
not too violent atomistically. The spin dynamics can be
described by ∂tn ¼ −ΓH, where we allow the magnitude
jnj to fluctuate. H ¼ δF=δn is the effective field (with F
being the free energy of the ferromagnet) and Γ is a

FIG. 2. Different phases of hedgehogs. At temperatures above
the Curie temperature TC, hedgehogs (black ripples) and anti-
hedgehogs (white ripples) carrying nonquantized topological
charges proliferate and become mobile. In the ordered phase,
hedgehogs are confined by a linear potential analogous to the
quark confinement in QCD. They are singular quantized objects,
represented by black and white spheres.
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phenomenological dissipative coefficient. As illustrated in
Fig. 1, we apply a linear electric current density (i.e.,
current per z thickness) J⃗ ¼ J ŷ in the left metal contact.
Given that the mirror-reflection symmetry is broken along
the z axis, symmetry considerations [20,29,66,67] suggest
that a spin flow can be transferred (per unit area) into the
magnetic texture, in the form

J ¼ 3ℏ
8eπ

ðζ⃗ · ∇⃗nÞ × ðJ⃗ · ∇⃗nÞ; ð8Þ

where ζ⃗ ¼ ζẑ is a phenomenologically constructed vector
(with the dimension of length), which reflects the mirror-
symmetry breaking in the z direction. Note that the spin
transfer J is isotropic in spin space and thus does not rely
microscopically on the presence of a spin-orbit coupling.
We also remark that J is constructed phenomenologically
based on symmetry considerations. Its microscopic origin,
magnitude, and direct experimental signatures remain to be
explored.
In the presence of this spin transfer, we have ∂tn ¼

−ΓHþ J=s, where s is the saturated spin density. The rate
of change of the free energy density is thus P ¼
∂tn ·H ¼ J · ∂tn=sΓ − ð∂tnÞ2=Γ. Here, the second term
is the Rayleigh dissipation and the first term yields the total
work done by the left contact upon magnetic dynamics:

W ¼
Z

dydzdt
J · ∂tn
sΓ

¼ ℏζJ
2esΓ

Q. ð9Þ

Note the work is proportional to the topological charge Q.
The setup in Fig. 1 therefore discriminates between
topological charges of opposite signs, biasing a net hedge-
hog current. We also remark that mirror symmetry in the z
direction is the minimal symmetry we need to break, in
order for ζ⃗ to effectively realize a polar vector in Eq. (8). As
a symmetry-allowed process, a hedgehog current can be
generated naturally as a channel to release the energy
associated with electron dynamics in the left contact (where
an electric current is applied, see Fig. 1). The electric
current in the (left) metal contact provides an effective
boundary bias for the hedgehog flow into the bulk,
effectively establishing a local chemical potential for
hedgehogs:

μ̄L ≡ δW
δQ

¼ ℏζJ
2esΓ

: ð10Þ

Nonlocal spin drag.—We are now ready to study the
transport of hedgehogs in the geometry depicted in Fig. 1.
To this end, we operate the system in the paramagnetic
phase, such that hedgehogs become mobile, rendering a
finite effective hedgehog conductivity σ. We employ an
Ohmic constitutive relation jx ¼ −σ∂xμ within the magnet.
At the left boundary, using an electric current, the chemical

potential for hedgehogs is raised by μ̄L. At the right
terminal, which serves as the ground, the natural chemical
potential vanishes, as hedgehogs can freely go in and out
through the right boundary. The hedgehog flow in the y
and z directions is nonvanishing in general [37]. Here we
assume translational invariance along these two directions
and focus on dynamics in the x direction. By invoking the
reaction-rate theory [68], we obtain the hedgehog inflow
and outflow at the left and right boundaries:

jLx ¼ 2γLðμ̄L − μLÞ=kBT; jRx ¼ 2γRμR=kBT; ð11Þ

in linear response. Here, μL;R ≡ μðx ¼ 0; LÞ is the chemical
potential at two ends of the magnet, where L is its length
along the x direction. γL;R ∼ νL;Re−E0=kBT is the equilibrium
injection rate of hedgehogs at the respective boundaries,
in terms of the attempt frequencies νL;R and an effective
energy barrier E0 governed by the core energy. Continuity
of the hedgehog flux establishes a steady-state current

jx ¼
ℏJ ζ=2esΓ

L=σ þ kBT=γ
; ð12Þ

where we took γL ¼ γR ¼ γ for simplicity. kBT=γ is the
boundary impedance. L=σ is the bulk impedance, scaling
linearly with the system size, which dominates in the
thermodynamic limit L → ∞. This is similar to the
ordinary Ohmic impedance for a conserved electric current.
The hedgehog conductivity σ ¼ ρ0D=kBT is highly tunable
via temperature [37], where ρ0 and D are the background
hedgehog density and the diffusion constant, respectively.
In the paramagnetic phase (T ≳ J=kB with J being the
exchange energy), let us consider the limiting case where
the order parameter varies on the atomic scale. Here, we
estimate ρ0 ∼ 1=a3 and D ∼ Ja2=ℏ, with a being the lattice
spacing. This yields the optimal conductivity σ ∼ 1=aℏ
in the paramagnetic phase, while ρ0 ∝ e−E0=kBT and thus σ
is exponentially small in the ordered phase.
The hedgehog current reaching the right terminal exerts

a pumping electromotive force on the metal contact
[42,44,69], which is determined by invoking the Onsager
reciprocity [70]: ε⃗ ¼ ℏj × ζ⃗=2esΓ. This leads to a finite
nonlocal drag resistivity (whose sign is opposite to a
viscous drag):

ϱ≡ ε

J
¼ ðℏζ=2esΓÞ2

L=σ þ kBT=γ
; ð13Þ

which is defined as the ratio of the detected voltage (per unit
length) along y at the right contact to the injected charge
current density at the left contact. In the thermodynamic
limit, the bulk impedance dominates and thus the resistivity
scales algebraically ϱ ∝ L−1.
In the ordered phase, hedgehog currents vanish in linear

response in the thermodynamic limit, while there can be
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transport in finite-size magnets. The magnet behaves like a
hedgehog dielectric, which can be polarized by the hedge-
hog chemical potential provided by the applied electric
current in the contact, like a usual dielectric polarized by an
electric field. This may be observed directly with coherent
diffractive imaging [71,72] or by testing (anti)skyrmion
structures on surfaces at two ends [73–75].
Similar to the work on the elastic response of skyrmion

crystals [76], one can study the transport feature due to the
elasticity of a hedgehog lattice across the hedgehog-lattice
melting transition, in the geometry of Fig. 1. To this end,
the magnet is replaced by a hedgehog lattice, which should
be experimentally accessible [23–25].
Interesting physics emerges when one studies the inter-

play between electric currents and skyrmion dynamics
[46,77,78], such as the skyrmion Hall effect due to the
emergent magnetic flux associated with skyrmions.
Similarly, we expect hedgehogs to exhibit rich dynamics
under electric currents, due to the possible complexity of
emergent 3D magnetic field associated with hedgehogs in
general.
Discussion.—We note that, though our discussion is

based on insulating magnets, it applies equally well to
conducting magnets, when the dimension along x is much
larger than the other two in Fig. 1, so that we can disregard
an Ohmic drag between the side contacts. Our symmetry
arguments for the hedgehog injection can also be extended
to antiferromagnetic systems, with the Néel order param-
eter, subject to a careful consideration of the magnetic
space group.
There are two interesting open questions we did not

address beyond the phenomenological level: the micro-
scopic origin of the spin transfer Eq. (8) and a precise
description of confinement-deconfinement transition of
hedgehogs. We remark that the proposed nonlocal spin
drag experiment in Fig. 1 also serves as a good testing
platform of the deconfinement of hedgehogs in the para-
magnetic phase.
The advances in coherent diffractive imaging and

vector-field tomography have proven promising for direct
observations of 3D magnetic textures, as space and time
resolutions are under improvement [71,72]. This progress
makes it possible for our theoretical concepts and
proposals to be experimentally investigated for further
understanding and future application of 3D topological
spin textures.
Our study broadens the scope of 3D spintronics in at

least two aspects: Hedgehogs, as commonly existing
topological textures in magnets, are promising to support
nonlocal transport in magnets and serve as information
carriers. The study of the hedgehog current also offers us a
handle to manipulate two-dimensional skyrmion textures,
with various potential applications in skyrmionics.
Transverse skyrmion textures and their associated free
energy can be loaded into a chiral magnet by biasing a

hedgehog flux through it. If the induced skyrmion density
can be preserved at lower temperatures, e.g., by the
Dzyaloshinskii-Moriya interaction, this would provide a
3D realization of the energy-storage proposal of Ref. [34].
Being able to change the skyrmion number, the hedgehog
flow can also be used to flip the polarity of a vortex core,
while maintaining the vorticity.
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