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We investigate the stability of a Luttinger liquid, upon suddenly coupling it to a dissipative environment.
Within the Lindblad equation, the environment couples to local currents and heats the quantum liquid up
to infinite temperatures. The single particle density matrix reveals the fractionalization of fermionic
excitations in the spatial correlations by retaining the initial noninteger power law exponents, accompanied
by an exponential decay in time with an interaction dependent rate. The spectrum of the time evolved
density matrix is gapped, which collapses gradually as − lnðtÞ. The von Neumann entropy crosses over
from the early time −t lnðtÞ behavior to lnðtÞ growth for late times. The early time dynamics is captured
numerically by performing simulations on spinless interacting fermions, using several numerically exact
methods. Our results could be tested experimentally in bosonic Luttinger liquids.
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Introduction.—While dissipation is traditionally viewed as
detrimental due to causing decay and randomization
of phase, recent years have witnessed tremendous progress
both in experiment and theory, as a result ofwhich dissipation
can now be considered as a useful tool or probe. Coupling
to environment, combined with the ability to create and
manipulate quantumsystems [1–3] in a controlledmanner has
provided us with unique states of matter [4–13], where
dissipation plays a major role. Such states also hold the
promise of being relevant for quantum technologies [14].
Besides the properties of the steady state, the route toward

reaching it can also reveal a plethora of peculiar phenomena.
The most prominent example includes quantum effects near
the event horizon of a black hole which give rise to the
celebrated Hawking radiation [15,16] and, eventually, to
black hole evaporation. In condensed matter and cold atom
contexts, it is rather natural to consider the dynamics of open
quantum systems, as these are never perfectly isolated from
the environment. Consequently, several dissipative many-
body systems were investigated [17–23], focusing on the
propagation and spreading of correlations, quantum infor-
mation loss, exponential vs power law temporal relaxation
toward the steady state, as well as the stability of various
phases when coupled to a bath [24,25].
Quantum many-body effects are particularly amplified in

one spatial dimension [26,27]. In the resulting Luttinger
liquid (LL) phase, the original fermionic excitations

fractionalize [28] into bosonic collective modes due to
interactions. This phase of matter is realized in a variety of
fermionic, bosonic, anyonic, etc. systems, including con-
densed matter [26] and cold atomic systems [29], quantum
optics [30], and even in black holes [31] and promises to be
a building block in possible application in topological
quantum computation, spintronics, and quantum informa-
tion theory. This motivated us to combine dissipation with
strong correlations and focus on the stability and evapo-
ration dynamics of LLs by coupling it to a dissipative
environment, modeled by the Lindblad equation. We find
that the fermionic single particle density matrix retains its
initial LL correlations in space in terms of noninteger
power law exponents, but the amplitude is reduced in time
due to dephasing. This indicates that fractionalization
persists in spatial correlations.
The von Neumann entropy crosses over from −t lnðtÞ

for early times to lnðtÞ growth for late times. The early time
dynamics is benchmarked numerically with dissipative
interacting fermions. Our results are also relevant for
bosonic Luttinger liquids [29].
Dissipation in the interacting Luttinger model.—The

low-energy behavior of one-dimensional systems is
described by the Luttinger model whose Hamiltonian reads

H ¼
X
q>0

ωqðbþq bq þ bþ−qb−qÞ þ gqðbþq bþ−q þ bqb−qÞ; ð1Þ
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where ωq ¼ vjqj, gq ¼ g2jqj, and bq annihilates a bosonic
excitation. Here, v ¼ v0 þ g4 is the sound velocity, where
v0 is the bare sound velocity and g2 and g4 describe forward
scattering between fermions with different and same
chiralities, respectively [26]. Since the Hamiltonian is
quadratic in the bosonic operators, it can be diagonalized
by the Bogoliubov transformation, yielding

H ¼ Eg:s: þ
X
q>0

ω̃qðdþq dq þ dþ−qd−qÞ; ð2Þ

where Eg:s: ¼
P

q>0 ðω̃q − ωqÞ is the ground state (g.s.)
energy and ω̃q ¼ ṽjqj is the spectrum of elementary excita-

tions with the renormalized sound velocity ṽ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − g22

p
.

We consider a LL, prepared in the ground state of the
interacting Hamiltonian, thus, no excitations are present. At
t ¼ 0, the coupling between the LL and its environment is
switched on, and for t > 0, the time evolution is governed
by the Lindblad equation [32–34]. The coupling to envi-
ronment is modeled by local current operators, as in
Refs. [20,35–38]. Such dissipators arise naturally when
considering fluctuating vector potential or gauge field as
the environment. The Lindblad equation reads as

∂tρ ¼ −i½H; ρ� þ γ

Z
dxð½jðxÞ; ρjðxÞ� þ H:c:Þ; ð3Þ

where ρðtÞ is the density matrix of the system and jðxÞ is
the current operator playing the role of the jump operator.
Using bosonization [26], the current operator is [39]

jðxÞ ¼
X
q≠0

ffiffiffiffiffiffiffiffiffi
jqj
2Lπ

r
sgnðqÞe−iqxðb−q − bþq Þ; ð4Þ

with L the system size, and the spatial integral in Eq. (3)
results in

∂tρ ¼ −i½H; ρ� þ γ

2π

X
q≠0

ð½Lq; ρLþ
q � þ H:c:Þ; ð5Þ

with Lq ¼
ffiffiffiffiffiffijqjp ðbq − bþ−qÞ. The spectrum of Eq. (5) is

expected to be gapless since the energy scale in both the
Hamiltonian and the dissipator ∼jqj. After Bogoliubov
transformation, the jump operator is rewritten as Lq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjqj=KÞp ðdq − dþ−qÞ, where K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv − g2Þ=ðvþ g2Þ

p
is

the Luttinger parameter [26] and K < 1 (K > 1) for
repulsive (attractive) interaction. The presence of the
interaction induces a renormalization of the dissipative
coupling γ → γ=K. This indicates that dissipation becomes
effectively stronger or weaker for repulsive or attractive
interaction for the density matrix, respectively.
Based on the Lindblad equation, the expectation values

of the occupation number and the anomalous operator are
obtained as

nqðtÞ ¼ Tr½ρðtÞdþq dq� ¼ γjqjt=ðπKÞ; ð6aÞ

mqðtÞ ¼ Tr½ρðtÞdþq dþ−q� ¼
γ

2πiKṽ
ðei2ṽjqjt − 1Þ; ð6bÞ

in accordance with Ref. [42]. The linear increase of
the occupation number implies that the system heats
up to infinite temperatures [43] and the LL eventually
evaporates during the Lindblad dynamics, unlike the
related problem with localized loss [44,45]. This also
follows from the observation that the jump operator is
Hermitian.
Green’s function.—To have a deeper understanding of

correlations, we study the time evolution of the single
particle density matrix or equal time Green’s function
defined as

Gðx; tÞ ¼ Tr½ρðtÞΨþ
R ðxÞΨRð0Þ�; ð7Þ

where ΨRðxÞ¼ð1= ffiffiffiffiffiffiffiffi
2πα

p Þexp½iPq>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2π=qLÞp ðeiqxbqþ
e−iqxbþq Þ� is the fermionic field operator of right-moving
electrons. By evaluating the trace in Eq. (7), the single
particle density matrix is obtained as [39]

ln
Gðx; tÞ
G0ðxÞ

¼
X
q>0

8π

Ljqj
�
g2
ṽ
RemqðtÞ −

v
ṽ
nqðtÞ

�
sin2

�
qx
2

�
;

ð8Þ

where G0ðxÞ ¼ ½i=2πðxþ iαÞ�ðα=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ α2

p
Þ½ðKþK−1Þ=ð2Þ�−1

is the initial Green’s function obeying the well-known
[26] power-law decay for x ≫ α with the exponent of
ðK þ K−1Þ=2. The momentum summation is regularized
with the exponential cutoff expð−αjqjÞ with α the short
distance cutoff.
It is important to note that the time dependence of the

single particle density matrix occurs only through the
quantities nqðtÞ and mqðtÞ which have been calculated in
Eqs. (6). Substituting these into Eq. (8), the summation
over q is carried out analytically as

ln
Gðx; tÞ
G0ðxÞ

¼ −
γt
πα

K−2 þ 1

ðαxÞ2 þ 1
þ γ

2πṽ

�
1

K2
− 1

�
I

�
ṽt
α
;
x
α

�
;

ð9Þ

where Iðy; zÞ ¼ arctanð2yÞ −P
s¼�½arctanð2y − szÞ=2�. In

the scaling limit, when ðx; ṽtÞ ≫ α, the time evolution of
the single particle density matrix is summarized as

Gðx; tÞ ¼ i
2πα

�
α

x

�½ðKþK−1Þ=ð2Þ�
exp

�
−
ðK−1 þ KÞγt

παK

�

×

�
exp ½ γ

4ṽ ðK−2 − 1Þ� for 2ṽt ≪ x

1 for 2 ṽt ≫ x
: ð10Þ
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It exhibits two peculiar phenomena: the power law spatial
decay of the single particle density matrix is preserved
throughout the time evolution with the initial LL exponent
of ðK þ K−1Þ=2. This noninteger exponent indicates that
part of the original fermionic excitations remain fraction-
alized during the nonunitary time evolution. In addition, the
spatial correlations are uniformly suppressed, exponentially
in time, in accord with Ref. [35]. The characteristic time
scale of the dephasing is set by the dissipative coupling and
the interaction strength as Kπα=½γðK þ K−1Þ�, as found
numerically inFig. 1. The decay rate decreases fromattractive
(K > 1) to repulsive (K < 1) interaction: even though γ itself
is renormalized to γ=K in the Lindblad equation, the original
bare fermion, ΨRðxÞ is also dressed by the interaction, thus,
reverting the trend for the Green’s function. It is rather
remarkable that, in spite of the gapless spectrum of the
Lindbladian [46], the fermionic Green’s function still decays
exponentially in time. On top of this, one may observe a kink
in the single particle density matrix which travels with the
velocity 2ṽ, which is the only light-cone effect, though this is
rather minor and is expected to be hardly observable. The
behavior in Eq. (10) is rather generic and occurs for other
correlation functions as well [39].
Time evolved density matrix and entropy.—Another

interesting quantity which characterizes the time evolution
governed by the Lindblad equation is the von Neumann or
thermodynamic entropy defined as SðtÞ¼−Tr½ρðtÞ lnρðtÞ�.
With the bosonized version of ρðtÞ [39], the trace is
evaluated as

SðtÞ ¼ 2
X
q>0

f½NqðtÞ þ 1� ln½NqðtÞ þ 1� − NqðtÞ lnNqðtÞg;

ð11Þ

where NqðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nqðtÞ þ 1

2
�2 − jmqðtÞj2

q
− 1

2
. Interestingly,

the time dependence occurs again only through the func-
tions given in Eq. (6). Its early and long time limits are
calculated as

SðtÞ ∼ L
πα

(
− γt

Kπα lnð γt
KπαÞ for γt ≪ Kπα

lnð γt
KπαÞ for γt ≫ Kπα

: ð12Þ

The early time growth agrees with numerics on dissipative
interacting fermions in Fig. 2, while the latter [47] is
reminiscent of the behavior of the entanglement entropy in
many-body localized systems [48,49].
In order to understand more closely the origin of this

behavior, we can also evaluate the eigenvalues of the
time evolved density matrix at each time instant, denoted
by λ0 ≥ λ1 ≥ λ2…. Formally, we can also assign an
instantaneous Hamiltonian to the time evolved density
matrix, ρðtÞ ¼ exp½−HρðtÞ�, whose spectrum is − ln λi.
We can define the gap in the many-body spectrum as
Δρ ¼ lnðλ0=λ1Þ. This is analogous to the spectrum of the
reduced density matrix and the corresponding entangle-
ment Hamiltonian and entanglement gap in closed
quantum systems [51,52]. Since the initial state is
pure, the t ¼ 0 spectrum is trivial [53]. During the time
evolution, the density matrix is brought to diagonal form
after an instantaneous Bogoliubov transformation as ρðtÞ∼
exp½−P

q ΩqðtÞb̃þq b̃q�, and for each momentum sector, the
single particle spectrum is ΩqðtÞ ¼ lnf1þ ½1=NqðtÞ�g. At
t ¼ 0, all Nqðt ¼ 0Þ ¼ 0, therefore, Ωqðt ¼ 0Þ ¼ ∞, and
the b̃q bosons are in their vacuum state, the gap in the
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FIG. 1. The early time scaling of the Green’s function for
various x values, obtained using three distinct numerical meth-
ods. The Green’s function decays with the same interaction
dependent exponent at each spatial separation, x. Top panel:
Jz=J ¼ 0.3, Γ=J ¼ 0.04, and N ¼ 22 (thick solid line) using the
quantum jump method with ED and PBC and 6000 averages over
quantum trajectories and for N ¼ 14 (thin dashed line) using ED
with PBC for the Lindblad equation. Bottom panel: Jz=J ¼ −0.5,
Γ=J ¼ 0.4 and N ¼ 41 using TDVP (thick solid line) with OBC
and for N ¼ 14 (thin dashed line) using ED with PBC for the
Lindblad equation. The agreement between various methods
indicates that the data is relatively free from finite size effects.
Here, x ¼ 1, 3, 5, 7, 9, 11, 13 (blue, red, black, green, magenta,
gold, and light blue, respectively), but not all x’s are shown.
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FIG. 2. The early time scaling of the von Neumann entropy is
shown for N ¼ 14 using ED for various parameters. Hardly any
finite size effects are present since theN ¼ 10 data falls almost on
top of this. The parameter δ ¼ αðJzÞ=αð0Þ accounts for the
renormalization of α with interaction, and is expected to increase
[50] with Jz. Here, we used δ ¼ 0.73 and 1.15 for Jz=J ¼ −0.5
and 0.3, respectively, with δ ¼ 1 for the noninteracting case.
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spectrum is infinitely large. After switching on the dis-
sipation, the gap in the many-body spectrum, which
parallels closely to the entanglement gap, starts to decrease
slowly for early times as

Δρ ≈ ln
�
πKα

γt

�
: ð13Þ

The bosonization approach is valid for momenta jqj < 1=α.
Our analytical results show that these modes definitely give
a singular, t lnðtÞ and lnðtÞ contribution to the entropy and
to the gap in the many-body spectrum at short times,
respectively. We cannot analytically determine the contri-
bution of the high energy modes which lie outside the range
of the bosonization approach. However, our numerics
indicate that the contribution of these high energy modes
is subleading, compared to the LL contribution.
Interacting fermions within the Lindblad equation.—To

illustrate our findings and check their validity in lattice
models, we have investigated one dimensional spinless
fermions in an open tight-binding chain with nearest
neighbor interaction at half filling using several numerical
techniques. The closed system is equivalent to the 1D
Heisenberg XXZ chain after a Jordan-Wigner transforma-
tion [26,27]. The Hamiltonian is

H ¼
XN
m¼1

�
J
2
ðcþmþ1cm þ cþmcmþ1Þ þ Jznmþ1nm

�
; ð14Þ

where c’s are fermionic operators, nm ¼ cþmcm and Jz
denotes the nearest neighbor repulsion, N the number of
lattice sites and the model hosts N=2 fermions. This model
realizes a LL for jJzj < J, and the strength of the interaction
is characterized by the dimensionless LL parameter [26]
K ¼ π=2½π − arccosðJz=JÞ� from the Bethe ansatz solution
of the model. Because of the bounded spectrum of Eq. (14),
the bosonization results are only applicable for early times,
before the whole band is populated during heating.
The lattice version of the current operator in Eq. (3)

reads as

jm ¼ iðcþmþ1cm − cþmcmþ1Þ=2; ð15Þ

which appears in the environmental part of the Lindblad
equation as Γ

P
m ð½jm; ρjm� þ H:c:Þ. To make contact

with bosonization, we use γ=α ∼ Γ. A similar problem
with a different jump operator [54] was considered in
Refs. [17–19].
The Lindblad equation for this dissipative many-body

system is attacked by three different methods. By vecing
[55], i.e., rearranging the square density matrix as a vector,
one can use standard exact diagonalization (ED) and
Krylov-space time evolution, reaching N ¼ 14. Second,
using the quantum jump method [5,32,33] for the same
system, we can reach N ¼ 22 at the expense of having to

average over the quantum trajectories. For these two
methods, periodic boundary condition (PBC) is used to
minimize finite size effects. Finally, we use the time
dependent variational principle (TDVP) with open boun-
dary condition (OBC) [56–58] within the matrix product
states framework to directly simulate the density matrix.
Initially, we prepare the system in the ground state by using
the density matrix renormalization group [59], and use the
ground state jΨ0i to build the density matrix ρ0 ¼ jΨ0ihΨ0j
in the form of a matrix product operator. Next, by vecing
the density matrix to jρi# the Lindblad equation (5) is
rewritten as ∂tjρðtÞi# ¼ LjρðtÞi#, with L the Lindbladian
organized now as a matrix product operator.
Using these techniques, we determine the equal time

Green’s function, i.e., Gðx; tÞ ¼ Tr½ρðtÞcþmþxcm�. For PBC,
this becomes independent of m due to translational invari-
ance, while for OBC,m andmþ x are chosen symmetrically
to the chain center to reduce the effects from the boundary
condition. As expected, Gð0; tÞ ¼ 1=2 is recovered in all
numerics (not shown). The spatiotemporal dynamics of the
single particle density matrix is plotted in Fig. 1, confirming
the results of bosonization: the spatial and temporal dynam-
ics practically decouples, the former preserves the LL
correlation encoded in the initial state, while the latter
displays pure dephasing for short times, analogously to
Ref. [35]. However, the temporal decay rate is strongly
influenced by the LL parameter K and decreases monoton-
ically with the interaction. The curves for different Jz’s are
not a priori expected to fall on top of each other as α in
Eq. (9) can follow a weak Jz dependence. For longer times,
deviations from the bosonization results are expected when
the explicit nature of the high energy degrees come into play.
These induce model dependent [17], nonuniversal features,
whose study is beyond the scope of our current work.
With the knowledge of the time dependent density

matrix, the dynamics of the von Neumann entropy is
evaluated. For early times, it follows the expected
−Γt lnðΓtÞ early time growth and obeys the scaling form
predicted by bosonization, as shown in Fig. 2. Here, we had
to account for the mild interaction dependence of the cutoff
by slightly renormalizing the value of the rate Γ → Γ=δ
[50]. Distinct cutoff dependent physical quantities, i.e.,
the single particle density matrix vs entropy, may require
slightly different interaction dependence of the cutoff. The
explicit value of the decay rate for a given microscopic
model can be determined similarly to the gap in sine-
Gordon related models [26] by comparing the analytical
results to numerics for the time dependent entropy and
correlation functions. For late times, the entropy converges
fast to its maximal value on the lattice ∼N lnð2Þ and the
lnðtÞ late time growth of the LL is not reproduced due to the
small local Hilbert space dimension (i.e., 2) for fermions.
We speculate that this late time growth could possibly show
up in bosonic realization of LLs [29], where the local
Hilbert space is much bigger [60].
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Finally, we evaluate the gap in the spectrum of the time
evolved density matrix, as discussed above. Its numerically
obtained value is shown in Fig. 3, which, in spite of its
cutoff dependence, still follows the − lnðΓtÞ prediction of
bosonization.
Summary.—We have studied the vaporization dynamics

of Luttinger liquids after coupling to dissipative environ-
ment through the local currents. Unlike unitary quantum
quenches, where the dynamical Luttinger liquid exponents
are different from the equilibrium ones [61], in our case, the
single particle density matrix reveals the persistence of
fractionalization of fermionic excitations in spatial corre-
lations with the equilibrium exponents, but with an ampli-
tude exponentially suppressed in time.
The von Neumann entropy crosses over from an early

time −t lnðtÞ growth to lnðtÞ growth for late times. The
former is attributed to the logarithmic collapse in time of
the instantaneous gap in the time evolved density matrix.
The early time features are captured numerically in a
dissipative interacting fermionic lattice model. Our results
apply to a large variety of systems and are observable in
bosonic Luttinger liquids.
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