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We propose a way to observe the chiral magnetic effect in noncentrosymmetric Weyl semimetals under
the action of a strong electric field, via the nonlinear part of their I-V characteristic that is odd in the
external magnetic field, or odd-in-magnetic field voltages in electrically open circuits. This effect relies on
valley-selective heating in such materials, which, in general, leads to nonequilibrium valley population
imbalances. In the presence of an external magnetic field, such a valley-imbalanced Weyl semimetal will, in
general, develop an electric current along the direction of the magnetic field—the chiral magnetic effect.
We also discuss a specific experimental setup to observe the chiral magnetic effect of hot electrons.
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Introduction.—In the area of three-dimensional topo-
logical systems, the theoretical predictions and experi-
mental discoveries of Weyl semimetals (WSMs) have led
to an explosion of activities due to the intriguing topo-
logical properties of these materials. Weyl semimetals
appear as topologically nontrivial conductors where the
spin-nondegenerate valence and conduction bands touch at
isolated points, the so-called “Weyl nodes”, which act as
the sources and sinks of the Berry curvature, which is an
analog of the magnetic field in the momentum space [1–7].
In these systems, which violate spatial inversion symmetry
and/or time-reversal (TR) symmetry, Weyl points of oppo-
site chirality come in pairs due to a no-go theorem by
Nielsen and Ninomiya [8,9].
In this work, we focus on one WSM signature transport

property: the chiral magnetic effect (CME). The CME
describes the generation of an electric current parallel to an
applied magnetic field (B) induced by the chirality imbal-
ance [9–15]. In the context of WSMs, the corresponding
current can be written as [12–18]

JCME ¼ e2

4π2ℏ2

X
w

χwμwB; ð1Þ

where w is the valley index and χw and μw are the monopole
charge and chemical potential of the wth valley, respec-
tively. Note that all chemical potentials must be counted
from a common origin. In what follows, we will use
ζw ≡ μw − Ew to denote the doping level of a node counted
from the energy of the band touching, as well as Tw as
the electronic temperature of the wth valley. We note
that Eq. (1) for the CME current is valid at finite
temperatures up to an exponentially small correction
of O½expð−ζw=TwÞ�.
The possibility to observe the CME current [Eq. (1)]

relies on one’s ability to drive valleys of opposite chirality

out of equilibrium with each other. Indeed, it is clear that,
for μw ¼ μ, the Berry-neutrality condition

P
w χw ¼ 0

ensures that the CME current vanishes. In WSMs, the
imbalance between valleys of opposite chirality can be
achieved via the chiral anomaly. This route was taken in
proposals to measure the CME in crystals via classical
negative magnetoresistance [9,19] or nonlocal voltages
[20]. The key feature of the anomaly-based proposals to
uncover the CME is the fact that the external magnetic
field is used to both generate valley chemical potential
imbalances and convert them into a CME current.
Therefore, the resultant signals are even in the magnetic
field. While it is still possible to measure them [21–23],
great care must be taken to distinguish the topology-related
effects from mundane Ohmic physics [22,24].
In this Letter, we present a new way to observe the chiral

magnetic effect in noncentrosymmetric Weyl semimetals
under the action of strong electric fields, via the nonlinear
part of the I-V characteristic that is odd in the external
magnetic field. In this approach, the chiral imbalance is
generated by valley-dependent heating, which occurs either
due to anisotropy of a crystal [25] or its gyrotropy. We show
that valley-selective Joule heating leads to hot carrier
redistribution among Weyl nodes with opposite chiralities.
When subject to an external magnetic field, such a valley-
imbalanced Weyl semimetal will, in general, develop an
electric current along the direction of the magnetic field.
We call the appearance of such a current the CME of hot
electrons.
Hot electrons in WSMs.—We view aWeyl semimetal as a

collection of anisotropic Weyl nodes, which are labeled
with index w and are described by the Weyl Hamiltonian:

HwðkÞ ¼ χwℏvwabkaΣb þ Ew; ð2Þ

where vab with Cartesian indices a and b is the velocity
tensor with a positive determinant (summation over
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repeated indices is implied); χw is the chirality associated
with theWeyl node; Σa is the ath Pauli matrix;Ew describes
the position of the Weyl node in energy space. A time-
reversal as well as inversion broken Weyl semimetal
containing two Weyl nodes described by Eq. (2) is depicted
in Fig. 1(a).
With each anisotropic Weyl point described by

Hamiltonian (2), we can associate a conductivity tensor
σwab, which is responsible for the valley-specific Joule
heating [26]

PJoule
w ¼ σwabEaEb; ð3Þ

E being the electric field applied to the crystal. Balancing
the rate of heat production [Eq. (3)] against the rate of
energy transfer into the phonon subsystem determines the
steady-state temperature of a node.
In what follows, we describe the relaxation processes of

hot carriers in Weyl semimetals [27]. The relevant
scattering mechanisms and the corresponding typical
timescales are intravalley impurity scattering τ; intra-
valley electron-electron scattering τee; intravalley electron-
phonon scattering τph; intervalley scattering τv. Here, we
assume the following hierarchy of the relaxation times:
τ ≪ τee ≪ τph ≪ τv. The τee ≪ τph inequality holds for

temperatures that are not too low; see below. We also
assume the Fermi-liquid regime to hold.
The above hierarchy of times allows us to simplify the

problem by avoiding explicit consideration of the two
fastest processes. Of these, the impurity intravalley scatter-
ing determines the odd-in-momentum part of the electron
distribution function and the conductivity of a valley. The
intravalley electron-electron scattering brings the energy-
dependent part of the distribution function to a quasi-
equilibrium form with valley-specific values of the
electronic temperature and chemical potential.
The two slower processes that are key for our purposes

are the intravalley electron-phonon scattering and inter-
valley scattering of charge carriers. Electron-phonon scat-
tering transfers energy out of the electronic subsystem and
determines the steady-state value of a node’s electronic
temperature Tw. The intervalley scattering, regardless of its
origin, redistributes carriers among Weyl nodes, deter-
mining their nonequilibrium chemical potentials μw. We
discuss these two processes in what follows.
Starting with the valley temperatures, we note that their

steady-state values are found from balancing the Joule
heating [Eq. (3)] with the electron energy loss to phonons
within each valley (since intervalley energy transfer is a
slow process). For a single isotropic valley, the energy loss
due to electron-phonon scattering was considered in
Ref. [27]. The result is most economically expressed using
a parameter λ ¼ ðk5BD2=16πℏ4vFρv4sÞ, which involves
crystal mass density ρ, speed of sound vs, the typical
Fermi velocity vF, and the deformation potential D. We
also introduce the characteristic Bloch-Gruneisen (BG)
temperature given by kBTBG ¼ 2ℏvskF, the density of
states at the Fermi level, NðζÞ ¼ ðζ2=2π2ℏ3v3FÞ, and
suppress the index w in all valley-dependent quantities
except the temperature. The energy loss for a single valley
per unit time and unit volume of the crystal is then given by

Pe-ph ¼ −NðζÞλT4
BGðTw − TÞ; ð4Þ

where T is the lattice temperature. In a steady state, one has
PJoule þ Pe-ph ¼ 0, which yields an electronic temperature

Tw ¼ T þ σabEaEb

NðζÞλT4
BG

: ð5Þ

Before moving to a discussion of intervalley scattering
and chemical potential imbalances, we briefly comment on
the region of Eq. (5) validity. From here on, we switch to
the system of units with ℏ ¼ kB ¼ 1, since in the expres-
sions below these constants appear in a trivially predictable
way. Equation (5) relies on the existence of electronic
temperature and on the temperature being high compared to
TBG, such that the electron-phonon collisions are quasi-
elastic. The first condition requires electron-electron
collisions to be faster than the electron-phonon ones.

FIG. 1. (a) Local in momentum space band structure of a Weyl
semimetal with two Weyl nodes located at different energies
Eþ < E− and different positions in momentum space “þ” and
“−” represent the chiralities of the Weyl nodes. Here, ζ� are the
doping levels of the � valleys measured relative to the band
touching energies (E�), and μ� ¼ ζ� þ E� denote the chemical
potentials for � valleys. In equilibrium, μþ ¼ μ−, and the
equilibrium CME current vanishes. The size of the Fermi surfaces
are different for þ and − valleys, as measured by ζþ > ζ−. In the
presence of an electric field, the valley with the larger conduc-
tivity has higher temperature. (b) A simple model of a TR-
invariant WSM with the C2v point group and four nodes related
by TR and mirror symmetries. The C2 axis is perpendicular to the
plane of the figure. The Fermi surfaces of the mirror-related nodes
are assumed to be anisotropic and are shown with ellipses. In the
presence of a strong electric field E applied along the fast
direction of one of the valleys, this valley’s temperature is higher
than that of its mirror-reflection partner, which has the electric
field point along its slow direction.
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The electron-phonon scattering rate is [28] τ−1ph ∼ λTT2
BG,

while the electron-electron one is τ−1ee ∼ T2=N2
vζ, where Nv

is the number of valleys in a WSM. We observe that the
electron-electron collisions dominate for T ≳ N2

vλζT2
BG.

For typical numbers, electron-electron collisions dominate
for temperatures above a few degrees Kelvin. Since the
Bloch-Grüneisen temperature is roughly a Kelvin in typical
WSMs [27], we see that the temperature regime in which
Eq. (5) holds is determined by the τph > τee condition,
while T > TBG is a weaker one.
Turning to the intervalley scattering, we assume that it

happens mainly due to impurity scattering. This is a good
approximation at low temperatures but also at tempera-
tures large compared to the Bloch-Grüneisen temperature
corresponding to the typical intervalley momentum trans-
fer, in which case the electron-phonon scattering is qua-
sielastic. Hence, we expect it to qualitatively describe the
physical situation at all relevant temperatures.
We describe the intervalley impurity scattering with a

scattering rate Γww0 ðεÞ, which sets the rate of transitions
from valley w0 to valley w per unit energy range, per unit
volume. We neglect “skew” intervalley scattering, setting
Γww0 ¼ Γw0w. Under these assumptions, the rate of change
of the particle density in valley w, nw, due to the intervalley
scattering is given by

_nw ¼ −
X
w0

Z
dεΓww0 ðεÞ½fwðεÞ − fw0 ðεÞ�: ð6Þ

Here, fwðεÞ is the angle-averaged distribution function of
carriers in valley w, which is only a function of the carrier’s
energy. The steady-state chemical potentials are from
_nw ¼ 0. Recalling that for τee ≪ τph the distribution func-
tion fwðεÞ has a quasiequilibrium form with a valley-
dependent chemical potential μw and temperature Tw and
applying Sommerfeld expansion to Eq. (6), we obtain a
system of equations for the valley chemical potentials:

X
w0

Γww0 ðμw − μw0 Þ þ π2Γ0
ww0

6
ðT2

w − T2
w0 Þ ¼ 0; ð7Þ

where Γ0 is the derivative of Γ with respect to ζ. At most,
Nv − 1 of these equations are linearly independent because
of particle conservation by intervalley scattering. They are
sufficient to determine valley chemical potential differences
driven by valley-dependent temperatures of Eq. (5).
Therefore, Eq. (7) fully describes the CME in the system
of hot electrons. Its validity relies on the intervalley
scattering being the slowest relaxation process.
CME of hot electrons in simple models.—Below, we

consider the CME current in two simple models of a WSM,
in which the considerations are effectively reduced to just
two inequivalent valleys.

First, we consider a WSM with just two Weyl nodes,
which are located at different energies [Fig. 1(a)]. This
minimal model of a (TR-breaking) WSM does not have any
mirror symmetries and is an examples of a gyrotropic
crystal [29].
We assume that the valleys are isotropic, such that the

conductivity tensor in Eq. (5) must be replaced according to
σab → σwδab, δab being the Kronecker symbol. We will use
w ¼ � to label the valleys according to their chiralities. For
definiteness, let us assume that the valley with positive
chirality has a larger Fermi surface due to the correspond-
ing nodal point being lower in energy, Eþ < E− in Eq. (2),
while the rest of their microscopic parameters are the same.
This implies that σþ > σ−. Since there are only two valleys,
we can drop the subscript on the transition rates, Γww0 → Γ.
From Eqs. (5) and (7), we obtain the difference between

the chemical potentials of the two valleys and use it to
calculate the CME current [Eq. (1)]. As a result, we obtain a
nonlinear contribution to the I-V characteristics of the
WSM, which is odd in the external magnetic field,
jCME ¼ αgE2B, where

αg ¼ −
e2

12

Γ0

Γ
T

�
σ

NðμÞλT4
BG

�
�
: ð8Þ

The subscript “g” on αg emphasizes that this response
coefficient is nonzero only in gyrotropic crystals; see
below. We assumed moderate electric fields, such that
T2þ − T2

− ≈ 2TðTþ − T−Þ, and the symbol ½…�� denotes
the difference of the entire expression inside the bracket
evaluated in the þ and − valleys. The coefficient αg scales
with energy ζ as αg ∝ ζ−5. In this model, the breaking of
inversion symmetry required for the appearance of the
CME current of a hot electron is signaled by ½…�� ≠ 0.
Let us now consider a minimal model of a TR-invariant

WSMwith the C2v point group, which includes four nodes;
see Fig. 1(b). In this model, the valleys related by the TR
symmetry are identical and, hence, have the same chirality,
transport characteristics, temperatures, and chemical poten-
tials. Valleys that are related by the mirror symmetry have
opposite chiralities; their conductivity tensors are essen-
tially one and the same tensor but with respect to a different
(rotated by π=2 around the polar axis) set of axes. For
simplicity, we assume that the conductivity tensor is
diagonal.
Being symmetry related, the Weyl nodes of the present

model are all at the same energy; hence, the preceding
considerations do not apply directly. That this model
nevertheless does exhibit the CME of hot electrons can
be easily seen from the following argument. Consider an
electric field oriented along the x axis, as shown in
Fig. 1(b). This is a slow direction for the valleys with
negative chirality and is the fast direction for the ones with
positivity chirality [see Fig. 1(b)], because the “slow” and
“fast” directions are related to the orientation of the major
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and minor axes of the elliptical Fermi pockets, respectively.
Therefore, we expect that for this electric field orientation
theþ valleys will have a higher temperature than − valleys.
According to the preceding considerations, that will result
in electron transfer from the hot to cold valleys and, hence,
nonzero CME current. It is clear that the sign of the effect
will be reversed for the electric field oriented along the y
axis, assuming the same orientation of the B field. The
effect vanishes for electric fields in the mirror planes of the
crystal, since such fields do not break the symmetry
between the valleys with opposite chiralities. These con-
siderations show that the CME current in this model is
jCME ¼ αc2vðE2

x − E2
yÞB. This is consistent with the sym-

metry requirements of the C2v group.
We now turn to the quantitative theory of αc2v . First, we

note that, since the valleys with opposite chiralities
are related by mirror symmetry, their diagonal conduct-
ivity tensors are given by σþ ¼ diagðσxx; σyy; σzzÞ and
σ− ¼ diagðσyy; σxx; σzzÞ, respectively. Their densities of
states at the Fermi level are the same, and we also assume
that they can be assigned effective Bloch-Grüneisen
temperatures, which are also the same by symmetry.
Using the above conductivity tensors in Eq. (5) for the
valley temperatures, we obtain

Tþ − T− ¼ σxx − σyy
NðμÞλT4

BG
ðE2

x − E2
yÞ: ð9Þ

As is clear from this equation and as was explained above,
the temperature difference between valleys is driven by
valley anisotropy in this case.
In the present model, the intervalley scattering operates

only between the mirror-symmetry-related valleys of oppo-
site chiralities, since the chemical potentials and temper-
atures of the TR-related valleys are the same. Hence, this
four-valley model effectively reduces to a two-valley one,
and the considerations of the previous model in Fig. 1(a)
apply. The expression for αc2v ends up being

αc2v ¼ −
e2

12

Γ0

Γ
T

σxx − σyy
NðμÞλT4

BG
: ð10Þ

Equation (10) allows one to estimate the order of
magnitude of the CME of hot electrons. We assume that
the scattering rate ΓðεÞ has a smooth energy dependence on
the scale of a typical Fermi energy, Γ0=Γ ∼ 1=ζ, and
use typical numbers for a WSM, similar to those
used in Refs. [27,30]: ζ ¼ 15 meV, vF ¼ 4 × 105 m=s,
vs ¼ 2.8 × 103 m=s, D ¼ 20 eV, ρ ¼ 7 × 103 kg=m3,
mobility μtr ¼ 105 cm2=V s, and anisotropy of 20%.
Then at T ¼ 10 K we obtain τph ∼ 10−10 s, which is
comparable to the typical disorder-induced intervalley
scattering times; hence, our results apply for T ≳ 10 K
for this hypothetical material (such that τph < τv). At
T ¼ 10 K, we get jαc2v j ≈ 102 T−1 V−1Ω−1. This is a very

large value of αCME, which can grow further with temper-
ature, in an approximately linear fashion. We further
discuss this point in the concluding part of the paper.
General symmetry requirements and candidate

materials.—The general expression for the CME current
of hot electrons, jCME;a ¼ gbcEbEcBa, is determined by a
symmetric second-rank pseudotensor g. Therefore, it can
exist only in (gyrotropic) crystals with point groups
allowing such a tensor. In particular, among 18 noncen-
trosymmetric crystal groups having nonzero components of
gbc, three groups (4 mm, 3 m, and 6 mm) out of it have a
fully antisymmetric component. Therefore, the Weyl
semimetals which belong to the other 15 groups (e.g.,
mm2, 4̄2m, etc.) can show the finite CME current due to
hot electrons. These are the same crystals that show natural
optical activity [31].
The chalcopyrite WSMs with space group D12

2d such as
CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2 [32] satisfy the
symmetry requirement to exhibit CME due to hot electrons,
and, therefore, the C2v-symmetric analysis also works for
D2d-symmetric group WSMs. Moreover, among the pro-
posed candidate WSMs, WP2, MoP2 [33], and Ta3S2 [34]
as well as experimentally verified WSMs such as MoTe2
[35], WTe2 [36,37], and TaIrTe4 [38] belong to the point
group C2v and, therefore, are the possible candidates to
show the proposed effect.
Discussion.—We conclude with discussing the relation

of our results to the previous work and describe an
experimental setup to measure the CME of hot electrons.
Nonlinear transport and optical effects that are odd in a
magnetic field have a long history in conventional non-
centrosymmetric semiconductors [39], macroscopic con-
ducting helices [40], chiral carbon nanotubes [41], and
WSMs [30,42–45]. In the context of WSMs, the most
relevant for the present work is Ref. [30], which studied the
appearance of the magnetochiral anisotropy in WSM due to
the chiral anomaly. In the language of the present paper,
that amounts to a nonlinear in electric field current that is
driven by the chiral anomaly and has the following form in
a WSM with isotropic valleys: jE2B ¼ αanðE · BÞE. Under
the same conditions, the current studied in the present work
is given by jCME ¼ αCMEE2B. The most notable difference
between these two currents is their dependence on the
orientation of the electric and magnetic fields. While the
current studied in Ref. [30] requires that the magnetic field
be aligned with the electric field, while the current itself
flows along the electric field, the current studied here exists
for any mutual orientation of the E and B fields and flows
along the magnetic field. This difference can be used to
distinguish between the two effects experimentally;
see below.
One can also compare the magnitudes of the two currents

using the expressions obtained from the model in Fig. 1(a),
which was also employed in Ref. [30]. After bringing the
results of Ref. [30] to the present notation and some simple
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algebra, we get αCME=αan ∼ ðT2=T2
BGÞðτph=τvÞ, where τv is

the intervalley scattering time. Thus, the ratio of magni-
tudes of the two effects contains two factors, the first of
which, T2=T2

BG, can be made large, and the other one,
τph=τv, is typically small. Our estimates show that the two
effects are roughly of equal magnitude at a temperature of
about 10 K, above which the CME-driven effect considered
here overpowers the chiral anomaly-related one. Both
effects are several orders of magnitude stronger than their
analogs in conventional materials [30].
The considerations of the preceding paragraph also make

it clear that the two—anomaly- and CME-related—effects
have different temperature dependencies. The anomaly-
related effect is finite at zero temperature, the corrections at
a finite temperature going like T2=ζ2. Instead, the CME-
related effect of the present work is small at small temper-
atures but grows with temperature approximately linearly
at T ≳ TBG.
Finally, we describe a setup to measure the CME of hot

electrons; see Fig. 2. Most drastically, this effect can
manifest itself via odd-in-B open-circuit voltages that
vanish without a magnetic field. In the thin-film geometry
of Fig. 2, there is ideally no voltage in the direction
perpendicular to the in-plane current flow. Upon applica-
tion of an out-of-plane magnetic field, a voltage drop will
develop across the film, whose magnitude is set by the
condition that there be no net current in the electrically
open circuit. The corresponding electric field across the
film is given by E⊥ ∼ αCMEE2B=σ, where E is the in-plane
transport electric field and σ is the relevant conductivity.
For E ¼ 10 V=m and B ¼ 0.1 T, we obtain E⊥ ∼ 0.5 V=m
for the numbers quoted above for the toy model with C2v
symmetry. Since the sign of the effect, in general, depends
on the transport electric field orientation with respect to the
crystallographic axes, it appears that the strongest limita-
tion on the observability of the CME signal is put by the
requirement that the sample be a single crystal.
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