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Physical systems with material properties modulated in time provide versatile routes for designing
magnetless nonreciprocal devices. Traditionally, nonreciprocity in such systems is achieved exploiting both
temporal and spatial modulations, which inevitably requires a series of time-modulated elements
distributed in space. In this Letter, we introduce a concept of bianisotropic time-modulated systems
capable of nonreciprocal wave propagation at the fundamental frequency and based on uniform, solely
temporal material modulations. In the absence of temporal modulations, the considered bianisotropic
systems are reciprocal. We theoretically explain the nonreciprocal effect by analyzing wave propagation in
an unbounded bianisotropic time-modulated medium. The effect stems from temporal modulation of
spatial dispersion effects which to date were not taken into account in previous studies based on the local-
permittivity description. We propose a circuit design of a bianisotropic metasurface that can provide phase-
insensitive isolation and unidirectional amplification.
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Reciprocity is a fundamental principle of a physical
system, requiring that the transmission between two ports
does not change if the source and receiver are interchanged.
Breaking reciprocity is necessary for unidirectional wave
propagation, such as wave isolation and circulation [1,2].
The conventional way for attaining nonreciprocity is to exert
magnetic bias on magneto-optical materials [3,4], which,
however, has a rather weak effect at high frequencies.
Moreover, the devices based on magneto-optical materials
are bulky and incompatible to systemswhere parasitic effects
of external magnetic fields should be avoided. An alternative
approach is to use nonlinearmaterials [5–8], but it onlyworks
for certain strengths of the incident signal and the function-
alities are limited by the dynamic reciprocity constraint [9].
Dynamic modulation of the material properties brings an

additional degree of freedom for obtaining unprecedented
wave effects in acoustics [10,11], optics [12,13], and
microwave engineering [14–16]. It was noticed quite early
that an electronic device whose properties are modulated in
space and in time can exhibit a nonreciprocal response [17–
19]. In the last decade, due to advances in electronics and
photonics, research interest in nonreciprocal wave propa-
gation based on space-time modulated systems has rapidly
revived and yielded various designs of nonreciprocal
devices: isolators [20–24], circulators [25], phase shifters
[26,27], and one-way amplifiers [28–30]. To date, all the
known approaches for obtaining nonreciprocal wave pro-
pagation in time-modulated systems can be boiled down
to the following three fundamental classes [31,32]:
Traveling-wave modulators (indirect photonic transitions)

[17,27,29,33–48], tandem phase modulators (and related
approach based on direct photonic transitions) [22,49–53],
and nonreciprocal frequency converters [54–56]. The first
approach implies modulation of material properties in both
space and in time, while the second requires two temporally
modulated components separated in space. In both cases, it
is necessary to use a series of time-modulated elements
which have to be precisely synchronized with each other,
which greatly increases the complexity of the biasing
networks. The third approach requires either an asymmetric
modulation function profile of the real part of permittivity
[32,55] or modulating both its real and imaginary parts
[54]. However, in both cases the system exhibits reciprocal
transmission for the fundamental frequency since waves
incident from the opposite directions “sense” effectively
the same structure (nonreciprocity manifests itself only
in nonreciprocal frequency conversion). Consequently,
designing isolators using this frequency-converter
approach requires cascading a pair of two converters, which
results in additional device complexity [54,55].
In this Letter, we introduce a concept of linear bianiso-

tropic time-modulated systems capable of nonreciprocal
wave propagation at the fundamental frequency and
implying solely temporal and uniform modulation of
material properties. This route for nonreciprocal time-
modulated systems, originated from bianisotropy (weak
spatial dispersion), strikingly differs from the previously
known three approaches based on the local-permittivity
material description. It should be mentioned that in non-
linear systems, nonreciprocal response under uniform
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temporal modulation is possible by creating an external
angular-momentum bias [57]. In addition to the funda-
mental theoretical importance, our approach additionally
provides certain advantages for practical realization (it
is sufficient to ensure temporal modulation of a single
component in the nonreciprocal system). We explain and
demonstrate the physics behind the new effect by analyzing
wave propagation in an unbounded bianisotropic time-
modulated medium (such a medium is reciprocal in
the absence of temporal modulations). Next, we extend
the study to two-dimensional bianisotropic metasurfaces
(single-layer metamaterial composites). We design a deeply
subwavelength metasurface that exhibits strong unidirec-
tional transmission or unidirectional amplification. The
metasurface incorporates a single temporally modulated
capacitive layer backed by a usual dielectric layer. We show
that the metasurface obeys the generalized time-reversal
symmetry, but exhibits strong unidirectional amplification
and attenuation. Finally, we propose an equivalent circuit
for the bianisotropic metasurface capable of phase-insen-
sitive isolation.
First, we analyze wave propagation in unbounded

materials whose effective material parameters are modu-
lated in time according to the same symmetric profile and
with the same phase at each point in space (uniform or so-
called global modulation). It will be shown that wave
propagation in arbitrary anisotropic materials with global
time modulation is always reciprocal. On the other hand, it
will be shown that under the same conditions, reciprocity
can be broken in bianisotropic materials.
The constitutive relations of a bulk bianisotropic material

(reciprocal in the absence of temporal modulations) with
antisymmetric magnetoelectric tensor (describing so-called
omega magnetoelectric coupling) can be written in the form
of [58] [Eq. (8.4)]

D ¼ ¯̄ε ·Eþ Ω ¯̄J ·H; B ¼ ¯̄μ ·Hþ Ω ¯̄J ·E; ð1Þ
where ¯̄ε and ¯̄μ are the anisotropic permittivity and per-
meability tensors, Ω is the amplitude of the bianisotropic
omega coupling, and ¯̄J ¼ ẑ × ¯̄I is the transverse vector-
product dyadic. Here, for simplicity, we use the adiabatic
model for temporal modulations, assuming that the
operational frequency ω is very low compared to the
lowest resonance frequency of the material. In this case,
the uniformly modulated material tensors can be written
as (see Sec. 1 of the Supplemental Material [59])
¯̄εðω; t; rÞ ¼ ¯̄εstðω; rÞ þ ¯̄MεðrÞ cosðωmtþ ϕÞ, ¯̄μðω; t;rÞ ¼
¯̄μstðω;rÞþ ¯̄MμðrÞcosðωmtþϕÞ, and Ωðω; t;rÞ ¼MΩðrÞ×
cosðωmtþϕÞ, where ¯̄εst and ¯̄μst denote static (in the
absence of time modulation) permittivity and permeability,
¯̄Mε,

¯̄Mμ, andMΩ are the modulation strength functions, ωm

is the modulation frequency, and ϕ is an arbitrary global
phase. Note that this model can be used for arbitrary
modulation frequency ωm (see Sec. 1 of the Supplemental

Material [59] for details). In the general nonadiabatic case,
the following derivations could still be performed, writing
the material parameters using integrals over past time.
Because of the periodical modulation, the electric and

magnetic fields are written in terms of the Fourier compo-
nents at frequencies ωn ¼ ω0 þ nωm, i.e., En and Hn. The
external sources are characterized by the electric current
harmonics Je;n, and time-harmonic oscillations in the form
eþjωt are assumed. Analogously to derivations in Ref. [71],
Eqs. (1) can be substituted into Maxwell equations and the
wave equation can be written in the matrix form ([59],
Sec. 2)

− jðfj½ω�−1 · ½D� þ ½AΩ� · ½J�g · ½Aμ�−1
· fj½ω�−1 · ½D� − ½AΩ� · ½J�g þ ½Aε�Þ · ½E� ¼ ½J0e�: ð2Þ

Here, ½E� and ½J0e� denote the column vectors with compo-
nentsEn and J0e;n ¼ Je;n=ωn, and [ω] is the diagonal matrix
with frequencies ωn at the diagonal. Block matrix [D]
denotes vector operation ∇× and block matrix [J] is
composed of antisymmetric matrices ¯̄J on the diagonal
(see the definitions of the matrices in Sec. 2 of the
Supplemental Material [59]). Block matrices [Aε], [Aμ],
and [AΩ] are described in Ref. [59] and include dependence
on the modulation strength functions ¯̄Mε,

¯̄Mμ, and MΩ,
respectively. They can be made symmetric by selecting
global phase ϕ ¼ 0 (the initial phase can be chosen
arbitrarily by time translation t → tþ Δt). Equation (2)
can be simplified to ½E� ¼ ½G� · ½J0e� with [G] being Green’s
function of the time-varying unbounded material written in
the block matrix form. As shown in Sec. 2 of the
Supplemental Material [59], the Green’s function matrix
of any anisotropic material (i.e., when AΩ ¼ 0) is sym-
metric [22], which implies that wave propagation in such
material is reciprocal and subject to the Lorentz reciprocity
[2] [Eq. (119)]. On the contrary, an unbounded bianiso-
tropic omega material with nonzero AΩ breaks reciprocity
since in this case matrix [G] is always not symmetric. It
should be noted that nonreciprocal transmission in biani-
sotropic material occurs even when permittivity and per-
meability are time invariant, i.e., ¯̄εðω; t; rÞ ¼ ¯̄εstðω; rÞ and
¯̄μðω; t; rÞ ¼ ¯̄μstðω; rÞ. It is important to mention that non-
reciprocity requires antisymmetric magnetoelectric cou-
pling and cannot be achieved in isotropic chiral
materials with globally modulated properties. This can
be easily verified replacing Ω ¯̄J in the former of Eq. (1) by
−κ ¯̄I and the latter by þκ ¯̄I [58] [Eq. (8.4)].
The above derivations demonstrate that a bulk material

with temporally modulated bianisotropic response sup-
ports nonreciprocal wave propagation. Since in most
practical situations implementation of bulk bianisotropic
materials can be complicated in terms of fabrication, next
we consider the same effect in a two-dimensional single-
layer array of bianisotropic elements (a metasurface).
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Analogously to bulk materials which can be modeled by
volume-averaged material parameters, metasurfaces are
conventionally characterized by surface-averaged material
parameters, i.e., polarizabilities, susceptibilities, or surface
impedances ([72], Sec. 2.4). Thus, the above conclusions
for time-varying bulk materials also apply to the time-
modulated metasurfaces. In what follows, we choose
the surface impedance model, which represents a metasur-
face as an equivalent circuit of specific configuration.
Propagating plane waves with electric E and magnetic H
fields are modeled by signals with voltages v and currents i
propagating in an equivalent transmission line (Sec. 3 of the
Supplemental Material [59]).
Any reciprocal bianisotropic metasurface can be

described by an equivalent T or Π circuit. We model a
metasurface with a T circuit formed by three lumped
impedances in frequency domain, Z1 and Z2 connected
in series and Z3 connected in parallel, as shown in Fig. 1(a).
The total thickness of the metasurface d can be deeply
subwavelength. In such representation, the series imped-
ances characterize effective magnetic polarization in the
metasurface (due to possible induced circulating currents),
while the parallel impedance corresponds to the electric
polarization. The degree of asymmetry of the T circuit,
proportional to the difference Z1 − Z2, characterizes the
bianisotropic omega response [64] [related to the Ω
parameter in Eq. (1) in the bulk material case]. Some
possible conceptual realizations of bianisotropic omega-
type metasurfaces are shown in Sec. 4 of the Supplemental
Material [59].
As a proof of concept, here we consider the simplest

circuit configuration that provides nonzero bianisotropic
coupling. We choose the right series circuit element as an
inductor with time-invariant inductance L0, while the
parallel element as a capacitor with temporally modulated
capacitance CðtÞ ¼ C0½1 − A sinðωmtþ ϕÞ�. The left series
element is short circuited [see Fig. 1(a)]. Based on the time-
domain analysis (Sec. 5 of the Supplemental Material [59]),

the incident and transmitted voltages for forward and
backward illuminations satisfy the following relations:

vfi ðtÞ ¼ P̂ðtÞvft ðtÞ; vbi ðtÞ ¼
�
P̂ðtÞ þ L0

2

d
dt

dC0ðtÞ
dt

�
vbt ðtÞ;

ð3Þ

where operator P̂ðtÞ is given by

P̂ðtÞ ¼ 1þ 1

2

d
dt

�
C0ðtÞ þ L0 þ L0C0ðtÞ d

dt

�
: ð4Þ

Here, vf;bi are the incident voltage signals (equivalent to
incident electric fields) for the forward and backward
illuminations, L0 ¼ L0=η0 and C0ðtÞ ¼ η0CðtÞ are the
inductance and capacitance normalized by the free-space
wave impedance η0 with the dimensions of time. As is seen
from Eq. (3), the differential operators acting on transmitted
voltages for the opposite illuminations vft ðtÞ and vbt ðtÞ
differ by the term which includes the time derivative of the
capacitance function. Therefore, if C0ðtÞ is constant, both
equations in Eq. (3) become identical, resulting in expected
reciprocal propagation in the time-invariant metasurface.
However, as will be shown below, a metasurface with
nonzero dC0ðtÞ=dt in general can exhibit nonreciprocal
transmission.
It is easy to test under what conditions the metasurface

described by Eq. (3) exhibits nonreciprocal propagation at
frequency ω0. To do that, we choose modulation at ωm ¼
2ω0 (Sec. 5 of the Supplemental Material [59]). Such
modulation frequency has been also applied, as examples,
for wave amplification [17] and one-way beam splitting
[48] but using space-time modulation schemes. Here, we
assume the transmission signal for both incident directions
is vf;bt ¼ cosðω0tþ ψÞ. In this way, the corresponding
incident signals can be easily found by substituting vf;bt into
Eq. (3) ([59], Sec. 5). After knowing the incident fields,

(a) (b) (c)

FIG. 1. (a) A T circuit that describes propagation of plane waves through a bianisotropic time-modulated metasurface. (b) Spectral
response of the time-varying LC circuit for forward and backward incident waves. In all three regimes, L0 ¼ 6.87 nH, ϕ ¼ 0, and
A ¼ 1. The capacitances C0 for the three regimes are C0 ¼ 2.2 pF for regime I, C0 ¼ 1.6 pF for regime II, and C0 ¼ 1.55 pF for regime
III. The operating frequency is f0 ¼ 10 GHz. (c) The spectral response of the metasurface. Here, CðtÞ ¼ 6.8½1 − 0.9 sinðωmtþ
0.084πÞ� pF for regime I, CðtÞ ¼ 5.24½1 − 0.9 sinðωmtþ 1.131πÞ� pF for regime II, CðtÞ ¼ 4.12½1 − 0.9 sinðωmtþ 1.195πÞ� pF for
regime III, f0 ¼ 10 GHz, ϵd ¼ 65, and d ¼ λ0=30.
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the transmission coefficients for forward and backward
incidences at the fundamental frequency can be
calculated as

Tfðω0Þ ¼ 4½Q − C0Aω0ðη0 − jω0L0Þejðϕ−2ψÞ�−1; ð5Þ

Tbðω0Þ ¼ 4½Q − C0Aω0ðη0 þ jω0L0Þejðϕ−2ψÞ�−1; ð6Þ

whereQ ¼ 4 − 2C0L0ω
2
0 þ 2jω0ðL0 þ C0η0Þ. It is obvious

that Tf and Tb are not equal only if L0 ≠ 0, which means
that this structure is nonreciprocal only when bianisotropic
coupling is present.
Interestingly, although the metasurface described by the

circuit in Fig. 1(a) is nonreciprocal, it obeys the generalized
time-reversal symmetry [32]. Under substitution vðtÞ →
vð−tÞ and η0 → −η0 (the latter substitution is due to
the reversal of the current direction in the circuit,
which is defined as iðtÞ ¼ vðtÞ=η0), relations (3) and (4)
do not change their forms, providing that Cðtþ ΔtÞ ¼
Cð−tþ ΔtÞ for some specific gauge time translation Δt.
Therefore, signal propagation in the circuit shown in
Fig. 1(a) obeys the generalized time-reversal symmetry
([59], Sec. 6). Such nonreciprocal but time-reversal
symmetric response was recently reported for static but
non-Hermitian systems [73]. Our modulated system is also
non-Hermitian, i.e., energy is not conserved in the system
([59], Sec. 10), and nonreciprocity manifests itself in terms
of unidirectional amplification and attenuation.
The temporal modulation induces frequency mixing, and

the reflected and transmitted signals contain infinite num-
bers of harmonics ωn ¼ ω0 þ nωm, where n is an integer
and refers to the harmonic order. In order to choose
parameters L0 and CðtÞ of the circuit providing the highest
nonreciprocity at the fundamental frequency, we optimize
the circuit values based on the time-Floquet analysis
(Sec. 7.1 of the Supplemental Material [59]) for given
incident voltages vf;bi ðtÞ ¼ cosðω0tÞ. In the numerical
optimization using MATLAB, we define the cost function,
F ¼ jjTfðω0Þj − Kj þ jTbðω0Þj, and search for such a set

of circuit parameters fL0; C0; A;ϕg which ensures F → 0
([59], Sec. 9). Parameter K defines the desired transmission
for the forward illumination, while for the backward
illumination transmission should be always suppressed.
We performed optimization of the circuit parameters for
three different regimes: Forward-transmitted wave is
attenuated by half (regime I: K ¼ 0.5), unchanged (regime
II: K ¼ 1), and amplified (regime III: K ¼ 2). The opti-
mization results are shown and confirmed with the simu-
lated results obtained from MathWorks Simulink in
Fig. 1(b). The results demonstrate that the metasurface
can perform one-way transmission by only modulating a
single capacitor in the equivalent circuit, and the trans-
mittance can be arbitrarily engineered with energy damping
or amplification via modifying function CðtÞ. These fea-
tures are very different from properties of the previously
reported nonreciprocal devices [17,27,29,33–46]. All non-
zero high-order frequency harmonics can be filtered out
using a conventional frequency band-pass filter. The power
and efficiency analyses of the system (also for the systems
in Fig. 2) are presented in Sec. 10 of the Supplemental
Material [59]. From Eqs. (5) and (6), it is obvious that the
nonreciprocity level can be arbitrarily tuned by adjusting
the value of static inductance (more details in Sec. 11 of the
Supplemental Material [59]).
Next, we implement the designed time-modulated equiv-

alent circuit [Fig. 1(a)] using a realistic metasurface
structure performing nonreciprocal transmission or ampli-
fication for plane waves. The parallel capacitor in the circuit
[Fig. 1(a)] can be implemented by an array of metallic
patches, as shown in the inset of Fig. 1(c). Under plane
wave incidence, the gaps between adjacent patches exhibit
capacitive property. In each gap, we embed a varactor to
tune the effective capacitance of the metasurface layer.
By applying a time-harmonic voltage signal on the var-
actors, the effective capacitance of surface will change
according to the function CðtÞ. The static inductance in
the equivalent circuit can be implemented by a dielectric
substrate. The required bianisotropic response of this meta-
surface is provided by its asymmetric geometry. Applying

(a) (b) (c)

FIG. 2. (a) Spectral response of the modified circuit for small modulation amplitude. Here, CðtÞ ¼ 6.33½1 − 0.1 sinð2ω0tÞ� fF,
L0 ¼ 6.2 nH, and L1 ¼ 38.2 nH. (b) Spectral response of the modified circuit for reduced modulation frequency. Here, L0 ¼ 216.1 nH,
LðtÞ ¼ 149.7½1 − sinð0.1ω0tÞ� nH, and CðtÞ ¼ 5.36½1 − sinð0.1ω0tÞ� pF. Isolation levels achieved at ω0 is 68.1 dB. (c) Forward and
backward transmission amplitudes of the fundamental harmonic as functions of the incident phase.
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optimization based on the time-Floquet analysis ([59],
Sec. 7.2), we find the optimal metasurface parameters
for the three mentioned regimes [listed in the caption of
Fig. 1(c)]. The transmission data through the metasurface
is shown in Fig. 1(c). The results are similar to those in
Fig. 1(b): the metasurface blocks transmission in the
backward direction but allows transmission or amplifica-
tion in the forward direction at ω0.
The dynamic range of capacitance variations in the

analyzed simple circuit example is relatively high, which
can hinder practical implementations. Nevertheless, it can
be significantly reduced by adding additional constant
circuit elements to the considered circuit. In Fig. 2(a),
we connect a static inductance to the time-varying capaci-
tance in series and optimize the modulation function to
realize an isolator (K ¼ 1). The nonreciprocal effect is still
evident even with the modulation amplitude as low as
A ¼ 0.1. Another issue is the high modulation speed
(ωm ¼ 2ω0), which can be easily realized in microwave
frequencies but challenging in optics. However, it is
important to note that in general, there is no fundamental
restrictions for the choice of ωm. Low speed modulation,
such as ωm ¼ 0.1ω0 and lower, can be achieved if the
equivalent circuit comprises more than one modulated
element (even having the same modulation law).
Figure 2(b) shows that by adding a time-varying inductance
LðtÞ which is in-phase modulated with CðtÞ (forming a Π-
circuit), strong isolation (K ¼ 1) can be achieved with the
modulation frequency ωm ¼ 0.1ω0. Importantly, as we
change the phase of the incident wave, the backward
transmission is always zero while the forward transmission
changes along with the incident phase. This means that, if
the pumping signal is synchronized with the forward
incident signal (the synchronization mechanism is concep-
tually shown in Sec. 12 of the Supplemental Material [59]),
the device can perform as a phase-insensitive isolator which
can work even when illuminated simultaneously from both
sides. The need for an additional time-varying circuit
element does not mean that one should modulate more
than one component in the actual metasurface. In general,
the modulation of bianisotropic metasurfaces results in time
dependence of all the circuit components in their equivalent
circuits ([59], Sec. 4).
To summarize, we have introduced a concept of biani-

sotropic time-modulated systems capable of nonreciprocal
wave propagation. In contrast to other approaches for
nonreciprocal systems based on temporal modulations,
our route provides high isolation (or amplification) at the
fundamental frequency using only uniform temporal modu-
lation of material properties. Our findings provide an
attractive alternative for designing magnetless nonrecipro-
cal microwave devices and, under a proper scheme of
bianisotropic response in the metasurface, can be further
extended to higher frequencies as well as applied to wave
processes of a different nature.
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