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Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical
properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions
separating ferromagnetic and paramagnetic phases in the quasiperiodic q-state Potts model in 2þ 1D.
Using a controlled real-space renormalization group approach, we find that the critical behavior is largely
independent of q, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length
exponent is found to be ν ¼ 1, saturating a modified version of the Harris-Luck criterion.
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Quenched disorder can dramatically affect the universality
class of a quantum phase transition, and drive it to a new
renormalization group (RG) fixed point if the correlation
length exponent ν violates the Harris criterion ν ≥ 2=d [1,2]
with d the dimensionality of the system. As the effective
randomness grows under renormalization, the new infrared
fixed point can either be characterized by finite or infinite
randomness. Infinite-randomness fixed points can be analyzed
using an asymptotically exact real space renormalization
group (RSRG) approach [3–5] that yields exact predictions
for critical exponents and scaling functions. The RSRG
approach has been applied to many different quantum phase
transitions in one and two dimensions, both at zero tempera-
ture and in the context of many-body localization [3–35].
The structure of infinite-randomness critical points

depends crucially on the assumption of spatially uncorre-
lated disorder. However, many present-day experiments,
involving, e.g., twisted bilayer graphene [36–38] and
ultracold atoms in bichromatic laser potentials [39–43]
involve systems that are spatially inhomogeneous, but
quasiperiodic rather than random. Quasiperiodic potentials
are deterministic, with strong spatial correlations, so they
do not lead to conventional infinite-randomness behavior
[44–50]. Instead, when a clean critical point is unstable to
quasiperiodicity, it flows to a new class of fixed points.
Field theoretic methods [51–57] do not easily generalize to
quasiperiodic systems [58,59] because there is no disorder
to average over. However, very recent results [60–62]
have revealed the existence of “infinite-quasiperiodicity”
quantum critical points [62] in one-dimensional spin
chains; at these critical points, RSRG yields exact pre-
dictions for exponents. Despite their differences, infinite-
quasiperiodicity and infinite-randomness critical points
share the key feature that the dynamical critical scaling
exponent z ¼ ∞: thus, the characteristic timescale tξ

associated with a length scale ξ grows faster than any
power law of ξ. So far, such infinite-quasiperiodicity fixed
points have chiefly been studied in one dimension;
higher-dimensional cases are poorly understood [63–66].
The z ¼ ∞ dynamical scaling leads to a rapidly vanishing
gap, which makes it hard to access the critical regime using
quantum Monte Carlo techniques [67–70]. Tensor network
based approaches (see, e.g., Ref. [71]) are also less suited to
study 2d quasiperiodic (QP) quantum criticality due to
large entanglement.
In this Letter, we propose a general RSRG approach to

study 2þ 1D quantum spin models with QP couplings. As
in the implementations of RSRG for disordered systems in
two dimensions, the RG changes the underlying geometry
of the system creating intricate and complex long range
interactions [9,16,19]. Nevertheless the RG procedure can
be efficiently implemented numerically. We focus on the
2D quantum Potts model, with q “colors” (q ¼ 2 corre-
sponding to the Ising model). For clean systems, the phase
transition separating paramagnetic and symmetry-broken
phases is in the classical 3D Potts model universality class,
which is a first order for q ≥ 3 [72–74]. Strong-enough QP
modulations should smooth these first-order transitions
[75], driving them to a new strong quasiperiodicity fixed
point that we describe using RSRG. Our results suggest that
the critical properties do not depend on q > 2, with the
Ising case q ¼ 2 being special. Beyond our numerical
results for the critical exponents, we propose a general
argument for the correlation exponent ν ¼ 1 for these new
infinite-quasiperiodicity transitions, based on the distribu-
tion of “defects” in the critical structure. Because of the
deterministic and almost periodic nature of quasiperiodic
potentials these defects form a definite pattern; in some
special cases, the defects form a QP tiling with a length
scale that defines the correlation length. Interestingly, the
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value of ν saturates a modified version of the Harris-Luck
criterion [76], namely, ν ≥ 1; the modifications are due to
boundary fluctuations coming from correlations in boun-
daries of rectangular patches at all length scales.
Model.—The q-state quantum Potts model is defined via

the Hamiltonian

H ¼ −
X

hi;ji
Jijδni;nj −

X

i

hi
q

X

ni;n0i

jniihn0ij; ð1Þ

defined on the square lattice with hi; ji denoting nearest
neighbor pairs, where ni is a variable on site i that takes one
of q possible values. The first term with Jij > 0 is a
classical ferromagnetic interaction favoring aligned spins,
while the second term is a quantum transverse field leading
to a paramagnetic phase at large hi’s. For q ¼ 2 colors, this
coincides with the familiar transverse field Ising model.
The three-state Potts model can be realized in cold atom
experiments [77–80]. Adding QP modulations is natural for
such systems, and there is a growing number of exper-
imental platforms which are starting to explore QP quan-
tum criticality [39,63,81].
The couplings Jij > 0; hi > 0 are inhomogeneous,

aperiodic but deterministic. Here, we consider Jij¼
f1ðk⃗1:r⃗Þþf2ðk⃗2:r⃗Þ, where r⃗¼ðix;iyÞþ 1

2
ðjx− ix;jy− iyÞ,

k⃗1, and k⃗2 are two orthogonal unit vectors, and faðxÞ ¼
faðxþ φ−1Þ for some irrational φ, which we take to be the
golden ratio, φ ¼ ð1þ ffiffiffi

5
p Þ=2. Similarly, the fields are

taken from an initial potential of the form, hi ¼ g1ðixÞ þ
g2ðiyÞ with gaðxÞ ¼ gaðxþ φ−1Þ. For concreteness, we
focus on the following QP modulations throughout the
Letter,

lJ
ij ¼ 2þ cos ð2πφk⃗1:r⃗þ ϕ1Þ þ cos ð2πφk⃗2:r⃗þ ϕ2Þ;
lh
i ¼ g½2þ cos ð2πφix þ ϕ3Þ þ cos ð2πφiy þ ϕ4Þ�; ð2Þ

where g is a parameter driving the transition, lJ
ij ¼ − ln Jij

and lh
i ¼ − ln hi are defined so as to decrease the transient

behavior in the RG, and ϕi are some constant global phases
which we average over. Unless otherwise stated, we take
k⃗1 ¼ ðsin θ; cos θÞ, with the angle θ ¼ ffiffiffi

2
p

π. Our results do
not depend on the details of these distributions [82].
RG procedure.—We now describe the RSRG procedure

we use to capture the critical properties of Eq. (1). One step
of the RG procedure consists of identifying the strongest
coupling in the Hamiltonian (which sets the cutoff, Ω) and
eliminating it, as follows [9,15,16,83]. If the strongest
coupling is a bond Jij, one merges the two spins connected
by the bond into a new effective spin (or “cluster”) with
magnetic moment μ0i ¼ μi þ μj (μi ¼ 1 for initial physical
spins). The effective transverse field acting on the cluster
is given by second-order perturbation theory, h0i ≈
½ðhihjÞ=ðκJijÞ� with κ ¼ q=2; also, any other spin (or
cluster) in the system that was connected to either i or j

now picks up a bond to the new cluster, with coupling given
by J0ik ¼ maxðJik; JjkÞ. If instead the strongest spin is an
effective field hi, one eliminates the site i. Any other pair of
sites j, k that were connected to i by bonds now pick up a
new effective bond, which we estimate using 2nd
order perturbation theory: J0jk ≈ Jjk þ ½ðJijJikÞ=ðκhiÞ�≈
maxðJjk; ½ðJijJikÞ=ðκhiÞ�Þ. This procedure correctly cap-
tures the low energy physics as long as Ω ≫ Jij; hj
(broadly distributed couplings) so that perturbation theory
is controlled; we will see that for infinite-quasiperiodicity
fixed points, the parameter controlling the error in pertur-
bation theory flows to zero upon coarse graining, leading to
asymptotically exact predictions for universal properties.
We numerically run the RG procedure described above

starting from a L × L square lattice. We first focus on the
q ¼ 3 Potts model—the critical behavior is largely inde-
pendent of q ≥ 3. As the system moves along the RG flow,
its geometry changes giving rise to graphs of increasingly
intricate connectivity. Instead of implementing the RG in
the naive sequence described above (i.e., always decimat-
ing a single largest coupling), we follow standard tech-
niques [16] to optimize the decimation sequence. (We have
checked that at the end of the RG procedure, the optimized
and naive decimation sequences yield identical couplings,
so this step is not an approximation.)
Magnetization and fractal exponent.—At the end of the

RG, the surviving cluster with moment μM determines the
magnetization of the system, mðL; gÞ ¼ μM=L2, where L is
the linear size of the system. To locate the critical point we
plot rðL; gÞ ¼ mðL; gÞ=mðL=2; gÞ vs g for various L; away
from the criticality rðL; gÞ changes with L, while being scale
independent at the critical point [83]. The critical
magnetization scales as mðL; gcÞ ∼ L−x giving the crossing
value rðL; gcÞ ¼ 2−x. The average moment of the cluster at
the critical point scales as μM ∼ Ldf with df being the fractal
dimension of the spins in the cluster. Those two exponents
satisfy the scaling relation df þ x ¼ 2. Those quantities are
plotted for the q ¼ 3 Potts model in Fig. 1, and we find
2−x ≈ 0.53 or x ≈ 0.92 and df ¼ 1.085� 0.024, consistent
with the relation df þ x ¼ 2.
Correlation length.—Assuming single parameter scaling

with a diverging correlation length ξ ∼ jg − gcj−ν, we
expect the following scaling form for the magnetization
mðL; gÞ ¼ L−xf½ðg − gcÞL1=ν�, where f is a universal
scaling function. Using the values of gc, and x obtained
from the plot of rðLÞ, we find a nice collapse for ν ≈ 1.
We now argue that this result ν ¼ 1 holds exactly, at least
for quasiperiodic potentials with frequency given by a
periodic continued fraction expansion such as the golden
ratio [84].
The argument for ν ¼ 1 is as follows. Let us first

consider the case where the quasiperiodic modulation is
parallel to the lattice vectors, i.e., k⃗1 ¼ ð1; 0Þ, k⃗2 ¼ ð0; 1Þ in
Eq. (2). We now consider running the RG for two
realizations of the lattice, one at criticality and one detuned
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by a distance δ. We now look for “defects,” or points on the
lattice where the two RG realizations begin to diverge
(because one of them decimates fields and the other bonds).
Defects occur when locally, fields are close (≲δ) in
magnitude to the neighboring bonds; thus, a small detuning
is enough to change the order of decimations. However,
because the quasiperiodic structure is approximated to
precision ∼δ by a rational approximant with period ∼1=δ,
each defect has an almost perfect repeat at a distance ∼1=δ
(along both lattice directions). This can be seen by observ-
ing that cos ½2πφðxþFnÞþϕ�¼ cosð2πφxþϕÞþOðφ−nÞ,
where Fn is the nth Fibonacci number: defects must repeat
along the vertical and horizontal axis, forming a QP tilling,
with a length scale ξ ¼ Fn ∼ φn, with δ ∼ φ−n giving ξ ∝
δ−1 (see Ref. [62] for a similar argument in quantum spin
chains). Thus, when the RG reaches length scale 1=δ,
defects will proliferate and drive the system away from
criticality, corresponding to ν ¼ 1. To illustrate this tiling
geometry, we plot the set S ¼ fi∶minflJ

ijg < lh
i g, where

the min is over nearest neighbors. This condition is satisfied
for couplings J that are decimated first in the RG, forming
nontrivial clusters. The geometry of the set S is shown
in Fig. 2.
The geometry away from θ ¼ 0 is less transparent, but

numerics once again suggests ν ¼ 1; moreover, the model
remains strongly anisotropic under coarse-graining, with
preferred orientations [Fig. 2(b)]. We now argue that, if this
anisotropy persists under the RG, it leads to a modification

of the Harris-Luck bound on ν [76]. The standard argument
for this criterion runs as follows. In a large patch of the
sample of linear dimension l, the apparent local value of
the critical point is δl ≡ hgil − gc ∼ lw−d where w is the
wandering exponent. Setting l to the correlation length
ξ ∼ δν, we get δξ ∼ δνðd−wÞ. When δξ is small compared with
the global detuning δ, the transition is well defined. This
criterion amounts to ν > 1=ðd − wÞ. Generic patches of a
quasiperiodic system have wandering exponent w ¼ 0 in
the bulk so the standard Luck criterion reads ν > 1=d.
However, this analysis ignores “boundary” terms due to
lines or other subdimensional regions of the sample
where δ is locally away from its average value. If one
includes these boundary contributions, the deviation is
δl ∼ lðd−1Þ−d ∼ 1=l, so that ν ≥ 1 regardless of dimension-
ality. The quasiperiodic Potts model appears to saturate this
modified bound, with ν ¼ 1 (up to logarithmic corrections).
Dynamical scaling and RG error.—We now turn briefly

to the dynamical scaling properties at this transition. One
can argue analytically that the timescale for a region of l
spins grows at least as ln tl ≳ ln2 l. This scaling follows

(a)

(b)

FIG. 2. Critical defects and quasiperiodic tiling structure.
(a) Geometry of the set S ¼ fi∶minflJ

ijg < lh
i g where lh, lJ

are defined in Eq. (2) with the angle θ ¼ 0. We have taken
g ¼ 0.4 for illustration purposes. Black sites belong to S, while
white sites do not, and form single-site clusters. We see pockets of
black sites separated by a 1D section of white sites, marked by red
lines. These red lines form a square QP tilling. Large clusters in
later steps of the RG are formed by joining small clusters within
different tiles or faces of the red lattice. Defects are breaks in the
pattern of intertile connections away from the critical point. The
number of breaks are proportional to the inverse of detuning
parameter δ, giving ν ¼ 1. (b) Geometry of S for g ¼ gc ¼ 0.425
and θ ¼ ffiffiffi

2
p

π. The structure is not as clear and well defined as in
the θ ¼ 0 case but we still see local puddles in S.

•

FIG. 1. Magnetization scaling. Scaling collapse of the mag-
netization mðL; gÞ for q ¼ 3 with the correlation length exponent
ν ¼ 1, critical coupling gc ¼ 0.425, and magnetization scaling
dimension x ¼ 0.92. Bottom inset: Plot of the ratio rðLÞ ¼
f½mðLÞ�=½mðL=2Þ�g vs g. In the para- and ferromagnetic phases
rðLÞ depends on L (large g corresponds to a ferromagnet, small g
to a paramagnet), while at the critical point this ratio is a constant.
Defining the scaling dimension x via m ∼ L−x, we have 2−x ≈
0.53 or x ≈ 0.92. The critical point is gc ¼ 0.425. Top inset:
Average magnetic moment μ̄M vs L giving μ̄M ∼ Ldf with
df ¼ 1.085� 0.024. This is consistent with xþ df ¼ 2.
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naturally from the RG rules; recall that these rules involve a
factor κ > 1 at each step. One can check that upon
decimating a region of size l to a single spin, one picks
up at least ln2 l factors of κ in the effective couplings [82],
implying an energy scaling − lnEl ∼ ln tl ≳ ln2 l. This
scaling can be interpreted as the scaling of the finite size
gap of a region of size l. This divergence might be
subleading (as it is in the random case), but guarantees
“activated” scaling, where t grows faster than any power of
l. As we see in Fig. 3(b), our numerical results are
consistent with ln tl ∼ ln2 l, i.e., the same dynamical
scaling as in one dimension [62].
A consequence of activated dynamical scaling is

that the RG becomes increasingly accurate at late
stages. The typical RG error [defined as logΔRG≡
hlog½ðmax Jij; hiÞ=Ω�i, where the max function is over
all neighboring terms ofΩ, with h·i denoting average over a
small window of − logΩ, and several phase realizations] vs
− lnΩð≡ΓÞ at the critical point is plotted in Fig. 3(a). We
see that on average, the RG error decreases along the RG
flow, suggesting that the RG becomes asymptotically exact,
as in the random case [9]. While the system sizes we can
access remain away from the asymptotic regime where the
RG is fully controlled, we observe very good quality
critical data (Fig. 1) with no signs of finite-size drifts.
Extrapolating these results, we expect the error of a typical
RG step to go to zero asymptotically with Γ. Therefore,
while RSRG would compare poorly to exact numerical
methods on small systems subject to weak or intermediate
modulation, it is expected to yield exact results for
universal quantities such as critical exponents.
Critical behavior vs q.—We conclude this Letter by

briefly discussing the case of q > 3. For q > 3, we observe
a similar behavior as for q ¼ 3; there is a 2nd order

transition with the RG becoming more controlled with the
flow. The correlation exponent ν ¼ 1 seems to hold, as
expected from the general arguments discussed above. The
df and x exponents appear to be same for all values of
q > 2, suggesting the same universality class for different
q’s, though we cannot exclude small differences based on
our numerical data. This is reminiscent of random [10] and
quasiperiodic [62] Potts spin chains in one dimension,
where the critical behavior is also independent of q.
Interestingly, for larger values of q, we observe that the
distributions of the gap and of couplings form “bands,”
with forbidden values in between the allowed bands [see
Fig. 3(c)]. Similar banding properties were observed in QP
quantum spin chains [62]; it would be interesting to
investigate whether this can be leveraged to understand
this RG analytically in the future.
The case of q ¼ 2 (the Ising model), is special. In this

case, we find that the RG does not flow towards infinite
quasiperiodicity, and is therefore not controlled. A similar
scenario occurs in 1D weak QP modulations are marginally
irrelevant [60–62,86] at the clean fixed points. However,
unlike the 1D case, we observe that even on introducing
strong QP modulations, the RG does not flow to infinite
quasiperiodicity. It would be especially interesting to
investigate the nature of this QP Ising transition, as we
expect it to be very different from the transitions described
in this Letter—in particular, it likely has a finite dynamical
exponent z, as a consequence of the prefactor κ ¼ 1 in the
RG rules.
Discussion.—We analyzed the critical behavior of quan-

tum phase transitions separating ferromagnetic and para-
magnetic phases in the quasiperiodic q-state Potts model in
two dimensions. Using a controlled real-space renormal-
ization group approach, we found that the critical behavior

•

(a) (b) (c)

FIG. 3. RG errors and gap distribution. (a) Plot of the RG error, ΔRG, vs RG time Γð≡ − lnΩÞ at the critical point. Data from 9
different phase realizations are combined and averaged over windows of Γ of size 0.05. We see a trend of the error decreasing with the
RG, i.e., increasing Γ (the black curve is a guide for the eye), whereas towards the end of the RG the data become more scattered and
noisy. As we increase system sizes, the onset of the data scattering shifts towards latter stages of the RG, consistent with the noisiness in
the error at higher Γ being a finite size effect. (b) Distribution of logarithmic of gap for q ¼ 3, − lnΔEg ≡ Γg. With increasing system
size, the average is increasing with the distribution becoming broader, indicating a broadening of couplings and fields along the RG flow.
Inset: Scaling of the finite-size gap, showing Γ̄g vs L; the fit is compatible with Γ̄g ∼ ln2 L. Binning window for Γg was taken to be 0.5.
(c) Distribution of logarithmic of gap for q ¼ 10 with window size of 0.05. Unlike the q ¼ 3 case, we see a systematic rise and fall in
PðΓgÞ, with the probability going to zero for some values of the gap. This is reminiscent of the 1D case where a similar banding of
couplings and gaps was observed [62].
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is independent of q, and is controlled by a new RG
fixed point providing the first example of infinite-
quasiperiodicity behavior in two dimensions. We argued
on general grounds that such QP quantum phase transitions
have correlation length exponent ν ¼ 1, saturating a modi-
fied version of the Harris-Luck criterion. We note that our
conjectured correlation length exponent ν ¼ 1 exactly
saturates the Harris bound for disorder: this suggests that
randomness is marginally relevant at those infinite quasi-
periodicity fixed points. (It is clear by construction of the
RSRG that randomness would change the fixed point.) It
would be interesting to find other examples of infinite-
quasiperiodicity transitions, both in two and three
dimensions, and also investigate the crossover from infinite
quasiperiodicity to infinite randomness.
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