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We study the dynamics of vortices in a two-dimensional, nonequilibrium system, described by the
compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact
numerical solution of the phase-ordering kinetics shows that the unique interplay between nonequilibrium
and the variable degree of spatial anisotropy leads to different critical regimes. We provide an analytical
expression for the vortex evolution, based on scaling arguments, which is in agreement with the numerical
results, and confirms the form of the interaction potential between vortices in this system.
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Topological defects play an important role in two-
dimensional (2D) critical systems with either U(1) or
SO(2) symmetry [1]. A paradigmatic example is the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition
between disordered and ordered phases of the equilibrium
planar XY model, caused by vortices binding at low
temperatures due to their mutual attractive interactions
[2,3]. Topological defects emerge naturally in a large
number of nonequilibrium systems [4–7], although their
roles at criticality are still largely unexplored. One
paradigmatic case is the compact Kardar-Parisi-Zhang
(cKPZ) equation [8,9], which appears as a natural exten-
sion of the noncompact KPZ equation, [10,11], when
considering the compactness of the phase. The cKPZ
equation has a wide range of physical applications from
driven-dissipative condensates, such as microcavity polar-
itons [12–16], polar active smectic phases [17], transport
phenomena in periodic media (driven vortex lattices in
disordered superconductors [18,19]), and synchronization
and frequency stability in networks and lattices of
coupled limit-cycle oscillators to coupled optomechanical
oscillators [20].
Recent theoretical studies suggest that the critical proper-

ties of 2D systems governed by the cKPZ equation differ
substantially from their equilibrium counterparts, and that
the BKT theory cannot be extended to all regimes [5,9,21].
This is rooted in the fact that the vortex-antivortex (V-AV)
interactions in an isotropic or weakly anisotropic (WA)
cKPZ system, in contrast to the equilibrium XY model,
become repulsive beyond a characteristic length scale. In
this scenario, a disordered vortex-dominated phase com-
posed of unbound vortices emerges and precludes a phase
transition to a quasiordered state in the thermodynamic
limit. However, in the strongly anisotropic (SA) cKPZ
system, the V-AV interaction is even more attractive than in
the XY model, and, consequently, the bound vortex pairs
stabilize a quasiordered phase at low noise levels, to some
extent as in the BKT theory for equilibrium systems.

In this Letter, we present the first clear confirmation of
these predictions, based on an exact numerical solution of
the full cKPZ dynamics, following a rapid quench across
the critical region. We explore the regime of parameters
accessible to the mentioned analytical methods and beyond.
We observe both (i) the new vortex-dominated disordered
phase in the WA scenario and (ii) the quasi-ordered phase
with diminishing number of V-AV pairs in the SA case.
Finally, we complement our numerical study with an
analytical derivation of the vortex equations of motion
by considering scaling arguments and the approximate
V-AV interaction potential, which is in excellent agreement
with the numerics of the full cKPZ dynamics. This
confirms that the approximate form of the vortex inter-
actions captures the essential physics.
The cKPZ equation and the vortex interaction.—The

cKPZ equation for compact variable θðr; tÞ reads [5,8]

∂tθðr; tÞ ¼
X
i¼x;y

�
Di∂2

i θðr; tÞ þ
λi
2
½∂iθðr; tÞ�2 þ ηðr; tÞ

�
;

ð1Þ

where, θ may denote the phase of the condensate, of the
charge-density wave order parameter, the displacement
field in a polar active smectic system, the phase field of
coupled limit-cycle oscillators. The diffusion constants Dx
and Dy are positive and here taken to be 1, which can be
obtained by an anisotropic rescaling of the lengths. The
nonlinear parameters λ can be either positive or negative
and capture the nonequilibrium nature of the system.
The Gaussian noise term with zero mean fulfils
hηðr; tÞηðr0; t0Þi ¼ 2σ2δr;r0δt;t0 . Vortices in the system
emerge as a consequence of the compactness of the θ
variable in Eq. (1), since

H ∇θdl ¼ 2πnðr; tÞ, with nðr; tÞ ∈
Z [5], where l is the contour. Consequently, nðr; tÞ ≠ 0
denotes a vortex with charge n, at site r and time t.

PHYSICAL REVIEW LETTERS 125, 265701 (2020)

0031-9007=20=125(26)=265701(5) 265701-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3707-9010
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.265701&domain=pdf&date_stamp=2020-12-22
https://doi.org/10.1103/PhysRevLett.125.265701
https://doi.org/10.1103/PhysRevLett.125.265701
https://doi.org/10.1103/PhysRevLett.125.265701
https://doi.org/10.1103/PhysRevLett.125.265701


As has been shown by Sieberer and coworkers [5,8,9], by
considering the dual electrodynamical (dED) picture of the
cKPZ equation and a perturbative expansion in the nonlinear
parameters λ, the vortices in the cKPZ system interact
through a force with both conservative and nonconservative
contributions due to the nonequilibrium nature of the system;
in contrast to the equilibrium XY model, i.e., when
λx ¼ λy ¼ 0, where the vortices interact through only central
Coulomb forces [22,23]. However, in the present study
we are interested in the scaling and critical properties of the
system and, consequently, in the interdistance R between a
vortex and an antivortex in a pair. Thus, we consider only the
central force within the vortex pair, which can be obtained
from the V-AV potential VðRÞ through FvaðRÞ ¼ −∇VðRÞ.
This potential, for charge �1 vortices reads [5]

VðRÞ ¼ 1

ϵ
log

�
R
Dc

�
−

a
3ϵ3

log3
�
R
Dc

�
; ð2Þ

where ϵ is the dielectric constant of the nonlinear dED
theory, Dc is the size of the vortex core, and
a≡ 2α2þ − ðα2−=2Þ þ ðαþα−=2Þ cosð2θ̃Þ, with θ̃ being the
angle of the vortex-antivortex dipole, which is set to an
average value of zero in the present study. The α coefficients
are α� ¼ λ�=ð2DÞ, with λ� ¼ ðλx � λyÞ=2 and
D ¼ Dx ¼ Dy. The first term of the potential (2) (zero
order in λ’s, i.e., λþ ¼ λ− ¼ 0) coincides with the potential
of the V-AV interaction in the planar XY model. The second
term of Eq. (2) comes from the second order correction in the
expansion in λ’s. The first order correction in λ does not
appear in Eq. (2) since it does not give a central contribution
to the force [5,9].
Differently to the equilibrium case, where the V-AV

interaction is always attractive, the potential (2) can give
both attractive and repulsive contributions, depending on
the relative sign of the nonlinearities λ [5,9]. Specifically,
when both λ’s have different signs, which defines the SA
regime, the force between Vand AV is always attractive and
enhanced with respect to the analogous force in the
equilibrium XY model. When the λ’s have the same sign,
which identifies the WA regime, the V-AV force is
attractive only up to a given length scale Lv [obtained
from the condition FvaðRÞ ¼ 0] beyond which it becomes
repulsive [9,21]. For the isotropic case, where λx ¼ λy ¼ λ

Lv ¼ Dc exp ð2
ffiffiffi
ϵ

p
D=λÞ: ð3Þ

Consequently, it has been predicted that the steady-state of
the system shows a vortex dominated phase, characterized
by a nonzero density of repelling vortices with a mean
interdistance Lv [9,21,24], also observed in the context of
the complex Ginzburg-Landau equation [25].
Dynamical equation for the vortex density.—

Considering the vortex potential (2) and general scaling
arguments we derive a dynamical equation for the vortex

density ρ in the long range limit, which reproduces the
numerical integration of the cKPZ equation (1), revealing
that the dynamics of the vortices is governed by the
conservative and central forces given by the potential
(2). The starting point is to consider the dynamical equation
for a single V-AV pair in the cKPZ system. Assuming that
the central potential (2) leads to viscous-relaxation dynam-
ics of the phase (where the forces coming from the central
potential are compensated by friction forces on each vortex
[26,27]), for a V-AV pair: Fva þ 2Fμ ¼ 0, where Fμ ¼ μv
is the friction acting on a single moving vortex with
velocity v and inverse mobility μ. Since v ¼ dD=dt, where
D is the distance between the vortex and antivortex, leads to
[6,9,26,28]

2Fμ ¼ 2μðDÞ dD
dt

¼ −FvaðDÞ: ð4Þ

The crucial point for characterising the vortex dynamics is
the form of μ since, as in the case of the XY model, we
expect a nontrivial dependence on D. In this Letter we
calculate μ associated with a single moving vortex with
velocity v of modulus v, whose field configuration is given
by ϕv. The frictional force reads as Fμ ¼ −∇vðdE=dtÞ,
with dE=dt ¼ R

d2rðδH=δθÞðdθ=dtÞ ¼ R
d2rðdθ=dtÞ2 ¼

v2
R
d2rð∂ϕv=∂xÞ2 [27–29], where E ¼ R

d2rH is the total
energy of the vortex configuration with energy density H.
Consequently, μ ¼ Fμ=v ∝

R
drð∂ϕv=∂xÞ2 ≈

R
drj∇θ0j2,

for an isotropic vortex located at the origin in the zero-
velocity limit, whose field is given by θ0.
Finally, we calculate ∇θ0 with the help of the dED

relation ∇θ0 ¼ z ×E0 [8,9], where E0 ¼ −∇VvðrÞ is the
electrostatic field created by a single charge (vortex)
located at the origin, and the potential VvðrÞ coincides
with potential (2), since we are considering vortices with
charge one. Therefore, we find that

μðrÞ ∝
�
logðr̃Þ − 2

3
ãlog3ðr̃Þ þ 1

5
ã2log5ðr̃Þ

�
; ð5Þ

where r̃≡ r=Dc and ã ¼ a=ϵ2. Expression (5) contains the
characteristic logðr̃Þ dependence of the equilibrium XY
model (λx ¼ λy ¼ ã ¼ 0) followed by higher logarithmic
powers from the nonlinearity λ, characteristic of the KPZ
system. We now derive the dynamical equation for the
vortex density ρ by considering that the system in the long
range limit is characterized by a unique single length scale
ξ, a characteristic velocity vξ ¼ dξ=dt, and characteristic
elastic FvaðξÞ and viscous μðξÞdξ=dt forces [26,27].
Taking an absolute value of Eq. (4) we obtain

μðξÞ dξ
dt

∝
1

ξ

����1 − ãlog2
�

ξ

Dc

�����; ð6Þ

which leads to the vortex density dynamics in the long
range limit through the relation ρ ∼ 1=ξ2 and using Eq. (5).
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Vortex dynamics after an infinitely rapid quench.—Here,
we study the dynamics of the vortex density after an
infinitely rapid quench from a completely disordered phase
to a low noise regime with σf ¼ 1=3 [see Fig. 1] by
exact numerical solution of full cKPZ equation (1). Phase
ordering kinetics following this type of quench protocol
has been used to study universal properties of both
equilibrium [26,27,30–32] and nonequilibrium [33,34]
complex systems.
Steady state.—Before addressing the quench dynamics,

we first characterize the nonequilibrium steady state
(Fig. 2). We find that in the SA regime, characterized by
different signs of λx and λy, the system shows two distinct
phases in the steady state: (i) A phase with vanishing
density of vortices at low noise levels below a critical noise
σc (left panel in Fig. 2); and with a finite magnetization
M2ðtÞ ¼ ð1=VsÞðm2

x þm2
yÞ, where Vs is the volume of the

system, mx ¼ hR d2r cos θðr; tÞi, my ¼ hR d2r sin θðr; tÞi,
and h· · ·i denotes averaging over stochastic realisations.
Note that M depends slightly on λ. (ii) A disordered phase,
characterized by a high density of vortices, which destroy
the magnetization at noise levels above σc. This critical
behavior shown in Fig. 1, equivalent to the one present in
the equilibrium XY model (λx ¼ λy ¼ 0), is consistent with
analytical predictions by Sieberer et al. using approximate
methods [5].
However, this picture changes completely at the WA

regime, i.e., λx and λy with the same sign. We find that the

steady state shows a nonzero density of topological defects,
which destroy the magnetization, even at low and vanishing
noise levels when λ ≥ 2.5, with λ ¼ λx ¼ λy (see Fig. 1 and
right panel of Fig. 2). The transition between a (quasi)
ordered phase and disordered phases is gone. We obtain
that the density of vortices is independent of the noise at
low noise strengths, revealing the length scale expressed in
Eq. (3) [35], which is a clear indicator of the vortex
dominated phase predicted by Sieberer et al. [5,9], and
analogous to one identified in the context of the complex
Ginzburg-Landau equation [25]. We also observe that for
low values of λ, the characteristic length Lv exceeds the
system size considered in this study and, consequently,
the system does not exhibit the vortex dominated phase.
In contrast, it shows two distinct phases as in the SA case,
one with a finite M and low vortex density (at low noise
levels) and another with a high density of entropic vortices,
which destroy the magnetization of the system (see the
λx ¼ λy ¼ 0.5 case in Fig. 1). This behavior is a finite size
effect since Lv > L in this case, where L is the system size.
Diffusive decay of the vortex density.—First, we consider

an infinitely rapid quench through a critical point in the SA
regime for different cases. Our exact numerical solutions of
the cKPZ equations show that the vortex density decays in
time following a diffusive law with a logarithmic correction
as in the equilibrium XY model, i.e., ρ ∼ ½logðtÞ=t�α
[27,31], as we can see in Fig. 3. (for further details of
the fit and discussion we refer to Fig. 7 and Secs. II and IV
of Supplemental Material [35]). An example of late time
dynamics for λx ¼ −λy ¼ 1.7 case is shown in the left panel
of Fig. 2 for a configuration with 3 pairs of vortices and in
Fig. 8 of the Supplemental Material [35] for a configuration
with no vortices. There is a very good agreement between
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FIG. 1. Steady state of the cKPZ system. Steady-state density of
vortices ρ (in arbitrary units, dashed curves) and magnetizationM
(solid curves) as a function of the noise parameter σ for different
λ. The vertical dashed line indicates the final noise σf ¼ 1=3 for
the infinite rapid quench shown in Figs. 3 and 4. For the XY
model with λ ¼ 0 (green curves) and the SA case with λx ¼ −λy
(black curves) the system exhibits (quasi)ordered and disordered
phases separated by a critical noise σc ≈ 0.63 (striped rectangle).
However, for the isotropic case with large nonlinearity λ (blue
curves), the system shows a vortex-dominated phase with no
magnetization even at low noise values.

FIG. 2. θðrÞ at late times with marked vortices. 2D maps with
position of vortices (black dots) and antivortices (red dots) on top
of the θðrÞ profile for a single realisation in two different regimes:
(i) phase ordering configuration in the SA regime with λx ¼
−λy ¼ 1.7 (left panel), note that due to periodic boundaries the
red V at the bottom is paired with the black AV on the top, and
(ii) vortex-dominated phase for λx ¼ λy ¼ 1.5 in the isotropic
regime (right panel). Note that the left panel shows the whole
system, whereas the right panel shows a zoomed quarter
(see the plot for the whole system in Fig. 8 of the Supplemental
Material [35]).
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the vortex dynamics coming from our numerics and
the dynamics predicted by Eq. (6). For all values of λ
considered here, the exponent α ≈ 1 (the difference
between the values of the exponents for the λ ≠ 0 and
the λx ¼ λy ¼ 0 is less than 15%. We, however, notice a
weak dependence of the exponent α on λ with α for λ ≠ 0
being close to 1.1 [35]. It is not clear whether this deviation
from α ¼ 1 is due to the nonuniversal corrections,
which could be attributed to the enhancement of the
V-AV interaction when increasing λ, or whether the system
falls into a different universality class with a critical
exponent α ¼ 1.1 rather then α ¼ 1. This will require
further investigations.
Vortex-dominated phase.—The isotropic system shows a

completely different behavior. First, for low values of
λ≡ λx ¼ λy, the decay of the vortex density scales asymp-
totically with the inverse time ρ ∼ 1=tβ. In contrast to the
SA case, the exponent β can be much smaller than 1 and
depends strongly on λ (see, for example, the λ ¼ 0.5 case in
Fig. 4). Note, that again the theoretical prediction of the
dynamics of the vortices given by Eq. (6) is in very good
agreement with numerical solutions of the cKPZ equation,
as displayed in Fig. 4. Specifically, we observe that β
decreases sharply when increasing λ, and becomes β ≈ 0
for λ ≥ 1.5, which indicates that the system reaches a
steady state with a nonzero density of vortices ρS (see the
right panel of Fig 2 where we can observe the distinctive
spiral configuration of the V-AV phase as predicted in
Ref. [5]). We believe that this saturation in the vortex

density is a consequence of the repulsive interactions
between the Vs and AVs in the isotropic and WA regime
at large distances. The characteristic length scale we obtain
from the numerical simulations through ρS ∼ 1=L2

v [21]
(the inset panel of Fig. 4) agrees extremely well with the
theoretical exponential dependence on 1=λ [5,9] derived in
Fig. 4 [35] and so indicates the emergence of the disordered
vortex dominated phase. Finally, we should stress that the
lack of saturation in the number of vortices for the λ ¼ 0.5
case is a finite size effect, i.e., the length scale associated
with the inverse of the steady-state vortex density exceeds
the size of the system considered in the present work. We
expect a saturation of the number of vortices for all values
of λ for an infinite system.
Summary and outlook.—We have explored the crucial

role of topological defects in the critical behaviour of a
nonequilibrium system described by the cKPZ equation by
determining numerically the full dynamics after a sudden
quench through a critical point. We have also derived an
analytical expression for the vortex density dynamics, using
the approximate form of the vortex–antivortex potential [5],
which is in excellent agreement with the numerical results.
Crucially, in the isotropic or WA KPZ regime, i.e., when

there are nonvanishing nonlinear terms of the same sign in
both spatial directions, we have identified a phase charac-
terized by a saturation of the vortex density in the phase
ordering process. This novel behavior, with no counterpart
in equilibrium systems, arises in the nonequilibrium sce-
nario due to the external drive and dissipation, and can be
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FIG. 3. Vortex dynamics in the SA regime. Number of vortices nv
as function of time t= logðtÞ after a sudden quench from a high noise
disordered initial state to a low noise σf final state. The dots show
the numerical solution of the KPZ equation and the solid lines the
theoretical prediction from Eq. (6). We observe a diffusive law with
a logarithmic correction: nv ∼ ½logðtÞ=t�α, with α ≈ 1 for all the
different configurations. Specifically α ¼ 1.016� 0.010; 1.111�
0.011; 1.130� 0.015; 1.142� 0.015 from top to bottom [35]. The
dashed line shows the α ¼ 1 case.
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FIG. 4. Vortex dynamics in the WA regime. Number of vortices
nv as a function of time t= logðtÞ after a sudden quench from a
disordered initial state to a low noise σf final state. The dots are
from the numerical solution of the cKPZ equation and the solid
lines are the analytical estimate from Eq. (6). From top to bottom:
λ ¼ 3.5, 3.25, 3.0, 2.75, 2.5, 2.25, 1.9, 0.5, with λ≡ λx ¼ λy. We
observe a saturation of the number of vortices at ρSðλÞ for
λ ≥ 1.9, which is a clear indicator of the vortex-dominated
phase [35]. Inset: Blue dots show the characteristic length scale
Lv ∼ ρ−1=2S obtained from numerics and red solid line from the
expression (3) for 2.5 ≤ λ ≤ 4.0.
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strongly modified by spatial anisotropy. We believe that
this vortex dominated phase appears as a consequence of
the repulsive V-AV interactions at large distances. Our
results confirm the existence of a new vortex-dominated
phase in systems larger then a characteristic length scale,
which is exponentially dependent on the inverse of the
nonlinear KPZ parameter.
In the opposite scenario, i.e., with either vanishing

nonlinear terms or with no linearities of opposite sign in
the two spatial direction (SA regime), we find that the
vortex density decays in time algebraically with an expo-
nent close to −1 and logarithmic corrections due to the
attractive V-AV interactions, as in the equilibrium planar
XY model scenario.
Since the cKPZ equation describes the behavior of a

wide range of atomic, molecular and optical systems, it
would be of a great interest to obtain the parameters of this
equation from microscopic analysis of a particular realisa-
tion. This would allow us to determine whether the new
vortex dominated phase as well as the transition between
isotropic or WA and SA regimes can be practically realized
in any of these realistic scenarios. Finally, the impact of the
sign of the V-AV interaction on the vortex dynamics when
the system crosses a critical point by following a finite
quench has not yet been explored. This type of critical
dynamics, which is successfully described for equilibrium
systems by the Kibble-Zurek mechanism [40,41], can have
different properties out of equilibrium, and is not to date clear
whether the extension of the concept of adiabaticity could be
carried over to the nonequilibrium scenarios [42,43].
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