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We study theZ2 Bose-Hubbard model, a chain of interacting bosons the tunneling of which is dressed by
a dynamical Z2 field. The interplay between spontaneous symmetry breaking (SSB) and topological
symmetry protection gives rise to interesting fractional topological phenomena when the system is doped to
certain incommensurate fillings. In particular, we hereby show how topological defects in the Z2 field can
appear in the ground state, connecting different SSB sectors. These defects are dynamical and can travel
through the lattice carrying both a topological charge and a fractional particle number. In the hardcore limit,
this phenomenon can be understood through a bulk-defect correspondence. Using a pumping argument, we
show that it survives also for finite interactions, demonstrating how boson fractionalization induced by
topological defects can occur in strongly correlated bosonic systems. Our results indicate the possibility of
observing this phenomenon, which appears for fermionic matter in solid-state and high-energy physics,
using ultracold atomic systems.
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Recent progress in atomic, molecular, and optical
(AMO) physics has established a new paradigm for the
investigation of quantum matter, allowing us to address
well-isolated and fully controllable quantum many-body
systems [1–4]. In contrast to solid-state materials, AMO
matter is controlled and probed at the single-particle level,
yielding a unique experimental toolbox, as exemplified by
the first demonstrations of Bose-Einstein condensation
with ultracold bosons [5,6]. Additionally, Feynman’s idea
of a quantum simulator (QS) [7], i.e., a controllable
quantum device that can be used as an efficient alternative
to numerical simulations of quantum many-body problems
with classical computers, was also first realized with
bosonic atoms [8].
A priori, the constituents of cold-atom QSs would be

fermion-boson mixtures, in order to account in particular
for fermionic matter in solid-state or high-energy physics
models [9,10]. A broader perspective, however, is to
synthesize new forms of matter which, while capturing
the essence of paradigmatic models in these two disci-
plines, exploit other constituents to target distinct micro-
scopic models. Experiments with bosonic atoms have
played a key role in this respect, as the control and
flexibility of AMO platforms [11] has allowed us to
synthesize new kinds of bosonic matter, in many cases
before their fermionic counterparts, and to investigate
relevant many-body phenomena. For instance, ultracold
bosons have been used as QSs of topological matter: from
bosonic symmetry-protected topological (SPT) phases

[12–14] to bosonic Hall samples [15,16] with
synthetic gauge fields [17,18]. The latter is a source of
fascinating physics, leading to anyons and charge frac-
tionalization [19]. Specifically, fractionalization occurs
for interacting fermions [20] or bosons [21], either in real
or synthetic 2D Hall samples. However, although
fractionalization has been observed directly for electrons
[22–24], the bosonic counterpart is still an open
problem [25].
In contrast to anyonic statistics, fractionalization can

occur in one dimension. Indeed, it was discovered precisely
in this context by studying relativistic quantum field
theories (QFTs) of fermions and solitons [26]. The soliton,
a topological excitation that appears after a SSB process
and cannot be deformed into the ground state at a finite
energy cost, polarizes the fermionic vacuum leading to
fractionally charged quasiparticles. This also occurs in the
electron-phonon Su-Schrieffer-Heeger (SSH) model of
polymers [27], or for fermionic atoms coupled to optical
waveguides [28]. We note that, despite past efforts with
polymers, there has not been an unambiguous direct
observation of soliton-induced fractionalization [19]. For
SPT phases, fractional states are expected to appear in
externally adjusted static solitons, which have been studied
with cold atoms [29]. The full problem, however, involves
dynamical solitons and the interplay between SSB and SPT.
We thus consider the questions (i) is there a bosonic
counterpart of fractionalization induced by dynamical
solitons, and (ii) can it be accessed with cold atoms?
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To address (i)–(ii), we study theZ2 Bose-Hubbard model
(BHM) [30–32], which extends the standard BHM [33] by
making the boson tunneling depend on a secondary species.
This species, localized at the lattice links and described in
terms of spins, can be pictured as a truncated version of the
SSH phonons [27]. We show how, for incommensurate
densities, the ground-state displays topological defects, as a
pair of spin solitons appear for each boson doped above
half-filling. We present compelling evidence that each
soliton carries half a boson, thus yielding fractionalization.
Using a topological invariant, we show how the solitons
interpolate between regions with different bulk topology,
explaining the presence of fractional particles through
topological band arguments [34,35] in the hardcore limit.
Finally, we generalize to softcore bosons through a pump-
ing protocol, where quantized transport takes place
between edges and solitons.
The model.—We consider bosonic fields on a chain

bi; b
†
i , interacting locally with strength U, and coupled to

Z2 Ising fields σxi;iþ1; σ
z
i;iþ1 [Fig. 1(a)]. The link spins dress

the boson tunnelling t with a strength α, and are subjected
to transverse (longitudinal) fields βðΔÞ, yielding

H ¼ −
XN
i¼1

ðb†i ðtþ ασzi;iþ1Þbiþ1 þ H:c:Þ þU
2

XN
i¼1

b†i b
†
i bibi

þ Δ
2

XN
i¼1

σzi;iþ1 þ β
XN
i¼1

σxi;iþ1: ð1Þ

When considering the spin Hilbert space as a truncation of
the phononic one, Eq. (1) resembles the SSH model [27]
with α playing the role of the electron-phonon coupling,
and Δ, β mimicking the mass and stiffness of the vibrating
ions. In the SSH model, the fermionic nature of the
electrons is crucial for the Peierls’ instability [36], which
is the precursor to solitons and fractionalization [27]. The
former implies the spontaneous breaking of the system’s
translational invariance, giving rise to long-range order and
a gap opening around the Fermi surface. Although for
various fractional fillings andU ≪ t, the Z2 BHM contains
quasisuperfluid (qSF) phases [30–32] similar to those of the
standard BHM [33], a bosonic analog of the Peierls’
instability arises as the interactions are increased, despite
the absence of a Fermi surface [Fig. 1(b)]. Depending on
the spin fluctuations, controlled by β=Δ, ground states with
coexisting magnetic long-range orders and bosonic SPT
phases can be found. In this work, we explore incom-
mensurate fillings, the existence of solitons, and the
possibility of observing boson fractionalization.
This possibility is motivated by an implementation with

atomic mixtures in optical lattices. The Ising spins arise
from a deeply trapped atomic species with two internal
states, initially prepared so as to avoid double occupancies.
The bosons stem from a different atomic species, trapped
by a shallower lattice, and leading to intra- and interspecies
scattering described by contact density-density inter-
actions. The spin-mediated tunneling arises as the only
possible process allowed by the energetic constraints
imposed by a superlattice structure. By defining the
Ising spins in terms of localized atoms in nonoverlapping
pairs of sites [37], and making them dynamical by means of
a Floquet driving [38], one obtains a QS of the Z2

BHM [39].
Ground-state Ising solitons.—The above Hamiltonian

has been studied at commensurate fillings [31,32], this is, at
rational fractions in the thermodynamic limit. Since there
are two SSB configurations for the spins, called A and B in
Fig. 1(b), one envisages situations where the spins inter-
polate between them forming a soliton [Fig. 1(c)]. These
finite-energy excitations could be created by crossing the
Peierls transition dynamically [40–42]. In this work, we
show that solitons also appear in the ground state for
incommensurate fillings. To analyze this situation, we
perform simulations based on matrix product states [43],
fixing the bond dimension to D ¼ 100 and the maximum
boson number per site to n0 ¼ 2, which suffices for strong
interactions, low densities, and α ¼ 0.5t.

(a)

(b)

(c)

(a)

(b)

(c)

FIG. 1. Bosonic Peierls transition and topological defects:
(a) Sketch of the Z2 BHM [Eq. (1)], where bosonic particles (red
spheres) tunnel between different sites with a strength that
depends on the Z2 fields (arrows) located on the bonds.
(b) Qualitative phase diagram at half filling [30]. The Z2 fields
are polarized for weak Hubbard interactions, but order anti-
ferromagnetically if the interactions are strong enough, according
to two degenerate patterns (A and B). The SSB drives the bosons
from a qSF to a BOW phase, where the bosonic tunneling is
dimerized (stronger tunneling in yellow). Additionally, the B SSB
sector hosts a SPT phase with localized edge states (red peaks in
the figure). (c) Extra bosons create pairs of topological defects in
the Néel ground state, interpolating between the different SSB
sectors and hosting fractionalized particles.
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The SSB yields Néel ordering hσzi;iþ1i ¼ ð−1ÞiφðiÞ,
where φðiÞ is a slowly varying field. The order parameter
φ ¼ P

i φðiÞ=N characterizes the two possible SSB sectors
φ ¼ �1, whereas solitons correspond to a scalar field φðiÞ
interpolating between them. As shown in Fig. 2, solitons
present the same profile as kinks in λφ4 relativistic QFT
[44], namely,

φðiÞ ¼ tanh

�
i − ip
ξ

�
; ð2Þ

where iP is the soliton center and ξ its width. By analogy
with the scalar QFT [45], the topological charge
Q ¼ 1

2

R
dx∂xφðxÞ can be evaluated by a finite difference

Q ¼ 1

2
½φðip þ rÞ − φðip − rÞ�; ð3Þ

at points well separated from the soliton center
r=ξ ∼OðNÞ.
Figures 2(a)–2(b) correspond to the β ¼ 0 limit, where

the spins have no quantum fluctuations, and the solitons
reduce to domain walls located anywhere in the lattice. A
topological charge ofQ ¼ þ1 can be directly read from the
soliton of Fig. 2(b). We remark on two differences with
respect to relativistic QFT: our solitons (i) appear directly in
the ground state, and (ii) are not free to move due to Peierls-
Nabarro barriers, this is, to the energy difference of a
soliton located at different elements of the two-site unit cell,
caused by the lack of a continuous translational invariance
[46,47]. In the following, we use the term antisoliton to
denote defects with Q ¼ −1, as these can annihilate

together with Q ¼ 1 solitons forming configurations with
zero topological charge.
As β > 0 is switched on, the Ising spins are no longer

classical discrete variables, but become dynamical fluctu-
ating fields. A direct consequence is that they can tunnel
through the barriers and delocalize. To benchmark the
prediction (2), we introduce a pinning mechanism by
raising β → β0 ¼ βð1þ ϵÞ at two consecutive bonds sur-
rounding the pinning center ip. The soliton can be pinned
anywhere in the chain to study its intrinsic properties. In
Figs. 2(c)–2(d), we show that quantum fluctuations widen
the extent of the soliton, where the nonzero width ξ > 0 is
extracted by fitting the corresponding slowly varying field
φðiÞ to Eq. (2). In Ref. [39], we discuss in more detail the
aforementioned Peierls-Nabarro barriers, and the widening
of the soliton, paying special attention to the role of the
Hubbard interactions which control the backaction of the
bosonic matter on the solitons. Moreover, we also explore
incommensurate fillings around densities 1=3 and 2=3,
which lead to solitons with higher topological charges. We
expect similar phenomena around other rational densities
with more complicated long-range orders.
Fractionalization of bosons.—The fact that solitons are

not restricted to finite-energy excitations but appear in the
ground state is crucial to find a bosonic version of charge
fractionalization. We find an unambiguous manifestation of
this effect by doping the half-filled system with a single
particle. To accommodate for this particle, an Ising soliton
or antisoliton pair is created, each hosting a bound
quasiparticle with a fractionalized number of bosons,
i.e., the boson splits into two halves. The same pair will
be created also if one boson is subtracted from half filling,
where now each defect hosts half a bosonic hole with
negative particle number. This mechanism is confirmed by
Fig. 3. The order-parameter field displays the aforemen-
tioned soliton-antisoliton pair for a chain of N ¼ 90 sites
and filled with Nb ¼ 46 bosons [Figs. 3(a) and 3(d)]. One
clearly sees that there is a density build-up around the
topological defects that follows the superposition of two
profiles

h∶nj∶i ¼ hnji −
1

2
¼ 1

4ξ
sech2

�
j − jp
ξ

�
; ð4Þ

for the even j ¼ 2i or odd j ¼ 2iþ 1 sublattices, with their
corresponding centers jp being fixed by the soliton-
antisoliton positions. We note that this expression coincides
with the profile of fermionic zero modes for the relativistic
Jackiw-Rebbi model [48,49], where fractionalization was
first predicted [26].
To test if bosons fractionalize, Figs. 3(b) and 3(e) present

the integrated density Ni ¼
P

j≤ih∶nj∶i, which shows two
plateaus where the boson charge jumps by steps of 1=2.
Accordingly, the soliton and antisoliton bind half a boson
each, forming two fractionalized quasiparticles. Both the

(a) (c)

(b) (d)

FIG. 2. Ising topological defects: We show the ground state
configuration for a chain of N ¼ 31 sites and Nb ¼ 16 bosons,
with U ¼ 10t and Δ ¼ 0.80t, where a topological defect appears
in the dimerized pattern of the Z2 fields. (a) and (b) show the
magnetization hσzi;iþ1i and the order parameter φj for β ¼ 0,
respectively, where the defect is a domain wall with topological
charge Q ¼ 1 (3). (c)–(d) Analogous topological defect for
β ¼ 0.03t, where quantum fluctuations broaden the defect,
leading to a soliton of finite width ξ, that can be accurately
fitted to Eq. (2).

PHYSICAL REVIEW LETTERS 125, 265301 (2020)

265301-3



soliton profiles and fractionalization could be detected
experimentally by measuring the local atomic occupation
with a quantum gas microscope [50,51]. This contrasts with
the complications for site-resolved measurements in the
solid state, which have hindered the direct observation of
soliton-induced fractionalization.
In the companion article [39], we present an in-depth

analysis of this fractionalization phenomenon, ruling out the
existence of polaron quasiparticles, and showing that the
soliton dynamics is crucial to understand the appearance of
self-assembled soliton lattices with a periodic arrangement of
the fractional charges. Moreover, we extend the analysis to
doping above other commensurate fillings, where the larger
topological charges allow for other fractionalization patterns.
Many-body topological invariants.—The topological

characterization is not fully captured by the topological
charge of the order-parameter field (3). In particular, the
bosonic sector may also display a topological Berry
phase, the calculation of which requires a full quantum-
mechanical treatment,

γi ¼
Z

2π

0

dθihϵgsðθiÞji∂θi jϵgsðθiÞi; ð5Þ

where θi is the angle that twists the bosonic tunneling
t → teiθi between i and iþ 1, and jϵgsðθiÞi is the corre-
sponding ground state. This local Berry phase generalizes
the notion of a many-body Berry phase with twisted
boundary conditions [52], and can be applied to non-
translationally invariant situations [53].
In Figs. 3(c) and 3(f), one can see how the intercell local

Berry phase changes by Δγ ¼ �π as one traverses the
soliton or antisoliton. Therefore, the topological defects not
only carry a topological charge Q ¼ �1, but they separate
topologically trivial regions γA ¼ 0 from nontrivial ones
γB ¼ π. We note that the theory of defects in SPT phases
[34,35] relates such inhomogeneous layouts of topological
invariants with the existence of protected quasiparticles
localized at the defects, a relation known as the bulk-defect
correspondence.
We emphasize, however, that this theory deals with

fermions and assumes an externally adjusted defect, which
only serves to provide a background for the fermions. To
our knowledge, our results show for the first time that
analogous effects occur for bosons in a fully fledged
quantum many-body problem where the defects are
dynamically fluctuating solitons. Following this connec-
tion, we note that in the U=t → ∞ limit, the Z2 BHM has
an additional chiral symmetry, and the corresponding
localized quasiparticles have support in just one of the
two sublattices [Fig. 3(c)]. Therefore, apart from the
inherent robustness of the classical solitons, the total
defects formed by a soliton and a fractionalized boson
are also protected against chiral-preserving perturbations.
Quantized boson transport between edges and defects.—

For a finite value of U=t, this chiral symmetry is broken
and, although the phase remains topological—protected
now by inversion symmetry [31]—the quantized value of
the Berry phase shown in Fig. 3(f) does not imply a
topological protection of the localized states. However,
here we show how the quantized intersoliton and edge-
soliton transport of bosons is topologically protected, and
that the localized quasiparticles can be understood as the
remnants of higher-dimensional states that do have this
additional robustness. To see this, we induce a Thouless
pumping by driving the Ising fields along a periodic cycle
Δ → ΔiðϕÞ ¼ 2ð−1Þit cosϕ, β → βiðϕÞ ¼ ð−1Þit sinϕ,
where ϕ: 0 → 2π.
In fermionic SPT phases, such adiabatic cycles lead to the

transport of an integer number of fermions Δn across the
system, which coincides with the Chern number Δn ¼ ν of
an effective 2D system [54]. Alternatively [55,56], this
invariant can be obtained from the change of the Berry phase,

ν ¼ 1

2π

Z
2π

0

dϕ∂ϕγðϕÞ: ð6Þ

As shown in Figs. 4(a)–4(b), the change of the local Berry
phase at the middle of the chain yields the Chern numbers

(a) (d)

(b) (e)

(c) (f)

FIG. 3. Boson fractionalization and local Berry phase: (a) Occu-
pation number h∶ni∶i for a chain with N ¼ 90 sites and Nb ¼ 46
hardcore bosons, for Δ ¼ 0.70t and β ¼ 0.03t. We superimpose φ
using dashed lines. We observe peaks in the occupation at the
defects, localized on different sub-lattices (blue and red). The solid
lines correspond to a fit to Eq. (4). (b) The integrated particle number
Ni shows how each peak contains half a particle. (c) The local Berry
phase γ is quantized to 0 or π in the different SSB sectors, and
interpolates between the two around the defects. (d) Softcore bosons
with U ¼ 10t, Δ ¼ 0.80t and β ¼ 0.02t, where we still observe
peaks in the occupation. These have now support on both
sublattices, since chiral symmetry is broken, but are still associated
with fractionalized bosons (e).(f) The topological Berry phase is also
quantized since inversion symmetry is preserved.
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ν ¼ �1 depending on the SSB sector A=B of the initial state.
By calculating the evolution of the boson density [Fig. 4(c)],
one clearly observes that a single bosonic charge is
transferred between the soliton and antisoliton, and between
each of them and the closest edge. Comparing with
Figs. 4(a)–4(b), it becomes clear that this pumping is directly
associated with the different Chern numbers. As announced
above, the fractional bosons bound to the defects can be
understood as remnants of the higher-dimensional con-
ducting states that are localized at the interfaces separating
the 2D regions of different Chern number. This establishes a
generalized bulk-boundary correspondence in the absence of
chiral symmetry where, even if the observed fractional states
at the defects are not protected, they contribute to topologi-
cally protected transport properties, and these can be inferred
from the topological properties of the bulk. In the companion
paper [39], we give more details of this pumping, showing
that it is crucial to understand the topological properties of the
soliton quasiparticles that appear at other fractional fillings
even in the hardcore limit.
Conclusions and outlook.—We showed how boson

fractionalization induced by dynamical solitons can take
place in cold-atomic systems. In particular, we study the
ground state of the Z2 BHM for incommensurate densities
around half filling. We found composite quasiparticles

consisting on dynamical solitons bound to fractional
bosons, and characterized their topological properties
and fractional charges. Finally, we connected these proper-
ties to the topological character of the underlying bulk
through a generalized bulk-defect correspondence and the
quantization of intersoliton transport.
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