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Entrainment in selective withdrawal occurs when both the top and bottom phases are withdrawn through
a capillary tube oriented perpendicular to a flat gravitationally separated liquid-liquid interface. The tube
introduces two distinct features to the conditions for fluid entrainment. First, the ratio of the two phases
being withdrawn is affected by the region of influence of the flow upstream of the tube’s orifice. Second, a
minimum withdrawal flow rate must be reached for entrainment regardless of the distance between the
interface and the tube. We show that these phenomena can be understood based on the Reynolds number
that governs the external flow field around the capillary tube and the capillary number that regulates the
effect of the viscosity and capillarity.
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Selective withdrawal occurs when a sink flow is present
near a stratified fluid-fluid interface. In an immiscible fluid
system, the sink flow causes the interface between the fluids
to deform until entrainment of both of the fluids occurs given
sufficient withdrawal strength. Near the onset of entrain-
ment, the interface can form a self-similar hump or tip [1–5];
during entrainment the interface forms a thin spout [6]
following a saddle-node bifurcation transition, as suggested
by numerical simulations [7]. The structure that generates
the sink flow, such as an immersed tube, is often idealized as
a point sink in theoretical studies of the hump-to-spout
transition dynamics [8]. However, the external flow profile
outside a tube affects which part of the flow domain gets
entrained [9]. Moreover, for a fixed withdrawal flow rateQ0,
the entrainment of both liquids can be achieved by reducing
the tube-interface distance H until Q0 reaches a critical flow
rate Q�

0. Below Q�
0, simultaneous withdrawal of both phases

is not possible at anyH. To the best of our knowledge, within
the reports in the selective withdrawal literature, it remains to
understand how the presence of a tube affects the entrain-
ment flow rate of each phase and howQ�

0 is controlled by the
liquid and tube properties.
In this Letter, we study fluid entrainment by selective

withdrawal with a tube in its full range of independent
parameters that begins from a thin jet and ends when the jet
fills the whole capillary tube. From a practical perspective,
tube-based selective withdrawal has been applied to particle
and cell coatings [10,11]. It also arises during the manual
pipette operation of a stratified liquid in blood fractionation
[12] and biomolecule extraction [13]. The phenomenon
could also potentially be used to form jets or droplets
without microfabrication for a wide range of applications
[14–17]. Thus, understanding the phase map, and depend-
ence on material properties, as we do here, may make
possible new applications.

The schematic of the setup and the definition of
parameters are shown in Fig. 1. An aqueous-two-phase
system (ATPS) is made by mixing a solution made of 25 wt
% isopropanol and 15 wt % dipotassium phosphate. The
solution will spontaneously separate in 30 min into a more
dense (bottom) phase and a less dense (top) phase. The
liquid is placed in a large tank (20 cm by 20 cm by 20 cm)
and the bottom phase is at least 10 cm deep to minimize
wall effects. The top and bottom solutions have viscosities
μ1, μ2 and densities ρ1, ρ2, respectively. The viscosity
ratio λ ¼ μ2=μ1 is no more than one in all experiments. The
interfacial tension between the two phases is γ. In the
experiments we also use immiscible two-phase systems
that include 1-decanol (top)–glycerol aqueous solution
(bottom) and glycerol aqueous solution (top)–fluorocarbon
oil (bottom, 3M Novec Engineered Fluid HFE-7500).

FIG. 1. Schematic of experimental setup and definition of the
variables. H > 0 is indicated here. H < 0 corresponds to the end
of the tube being in the lower phase. The “front” and “rear” refer
to the front and rear of the capillary.
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The glycerol solutions allow us to tune the viscosity from
10 to 1000 mPa s. All chemicals except otherwise specified
were purchased from Sigma-Aldrich.
The circular glass capillary has inner radius R0 and is

placed perpendicular to a liquid interface with a separation
distance H from the undisturbed flat interface. H is
negative when the orifice is below the undisturbed inter-
face. Capillaries with R0 ¼ 150, 350, or 750 μm are used.
To minimize the influence of the capillary wall [11], the
capillary wall thickness is no more than 0.67R0. A
withdrawal flow rate Q0 is applied to the glass capillary
with a syringe pump (Harvard Apparatus). Images are taken
with a digital camera through a microscope objective.
When entrainment occurs, a spout of radius Rjet forms
inside the capillary for the two-phase system (Fig. 1).
In a general case of a selective withdrawal experiment,

depending on the phases being withdrawn, the parameter
space of H and Q0 is divided into three regimes: only
withdrawal of the top phase (T) [Fig. 2(a)], only withdrawal
of the bottom phase (B) [Fig. 2(d)], or entrainment of both
phases (E) [Figs. 2(b) and 2(c)] as shown in Fig. 2(e). The
transitional H and Q0 between the T and E regimes
follows a power law of Q0 ∝ H3.33 for the ATPS system,
consistent with the results reported experimentally by
Cohen in aqueous-oil systems (Q0 ∝ H3.4�0.6, λ ¼ 0.83,
γ ¼ 31 mN=m [2,3]). This hump-to-spout transition has
been well studied experimentally, typically by fixingH and
varying Q0. We note that a hysteresis region exists at low
flow rates above the boundary between the T and E regions
where, after reducing H and triggering entrainment, the
entrainment does not immediately stop if H is then slightly
increased [2], as shown by the dashed line in Fig. 2(e).
Similarly, hysteresis occurs between the T-B and B-E
boundaries due to wetting effects.
We focus on the transitions indicated by the solid curves

in Fig. 2(e) that are recorded with monotonically
decreasing H. We are not aware of the phase diagram in
Fig. 2(e) being recorded previously. In this figure, the flow
rate Q�

0 corresponds to the Q0 at the triple point among the
T, E, and B regimes, which we will study in detail near the
end of this Letter.
In the E regime, the entrainment ratio ϕ ¼ Qjet=Q0

increases from 0 to 1 from the TE boundary to the BE
boundary; Qjet is the flow rate of the bottom phase. To
calculate ϕ, the width of the jet Rjet is measured. The
calculation of the jet flow rate Qjet is determined assuming
fully developed laminar flow inside the capillary:

ϕ ¼ Qjet

Q0

¼ 1 −
ðR2

0 − R2
jetÞ2

ðμ1R
4
jet

μ2
− R4

jet þ R4
0Þ
: ð1Þ

Inclusion of the buoyancy effect for the flow in the
capillary shows only a small difference with the result from
Eq. (1), thus gravity is neglected in the calculation of Qjet.

To sample the phase space across the E regime in Fig. 2(e),
for each fixed flow rate, the capillary is moved from top to
bottom across the fluid interface (decreasing H) until both
the T and B regimes are reached.
We report ϕ versus H for different Q0 using a capillary

with R0 ¼ 150 μm in Fig. 3(a). We observe that ϕ varies
approximately linearly with H, with the linear regression
R2 > 0.98 for all flow rates tested.
To rationalize the data, we adopt the analysis framework

described by Lister for low-Reynolds-number flows [8].
The selective withdrawal problem of a point sink with
fluids of equal viscosities can be fully characterized by two

FIG. 2. The phase diagram of selective withdrawal using ATPS
with R0 ¼ 150 μm. The numbers in (a)–(d) indicate the sampling
location in (e) with corresponding numbers. (a) Only withdrawal of
the top phase (T). (b) Entrainment (E) of both phases at positiveH.
(c) Entrainment (E) of both phases at negative H. (d) Only
withdrawal of the bottom phase (B). Scale bar is 400 μm andQ0 ¼
8 ml=min for (a)–(d). (e) Phase diagram on the H-Q0 plane. T:
only withdrawal of the top phase; B: only withdrawal of the bottom
phase; E: entrainment of both phases.Q�

0 is the minimum flow rate
of the entrainment regime. The dashed line delineates the boundary
of the hysteresis region between T and E. Typical error bars are the
size of the symbols. Data points were obtained by fixing Q0 and
monotonically decreasing H. The solid lines fit the data points.
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dimensionless numbers in the low-Reynolds-number limit:
dimensionless withdrawal strength Q ¼ Q0μ1=ðΔρgH4Þ
and Bond number, ℬ ¼ ΔρgH2=γ, where Δρ ¼ ρ2 − ρ1.
In the limit with zero surface tension, ϕ is only a function of
Q for nonzero H.

The entrainment ratio is plotted versus Q in Fig. 3(b). Q
reaches maximum values whenH → 0, which separates the
upper branch of the curve where H is negative (filled
symbols) and the lower branch where H is positive (open
symbols). For each Q0, the data fall on separate curves on
the ϕ-Q plane at low Q0, but collapse on the same curve at
high Q0. The limiting ϕ-Q relationship at high Q0 agrees
well with the simulation result by Lister for the zero surface
tension limit [8], shown as the solid curves in the figure.
The simulation branch for H < 0 is symmetrical to the
branch for H > 0 with respect to ϕ ¼ 1=2 for ℬ → ∞
and equal viscosity fluid systems. The analysis [8] shows
that flow is viscously driven outside a distance l ¼
Oðρ1Q0=μ1Þ away from the sink. Within a distance l
the flow becomes a momentum dominated radial flow.
Why does the experiment with a tube and the simulation

with a point sink result in a different ϕ-Q relationship at
lower Q0 in Fig. 3(b)? The finite Bond number (surface
tension) in the experiments cannot explain this discrepancy
at lower Q0. The restoring force from surface tension
reduces ϕ for a fixed Q with H > 0 and increases ϕ for
H < 0, resulting in a right-shifted ϕ-Q relationship. From
Fig. 3(b), however, ϕ is larger in the experiments than in the
simulation for H > 0. Additionally, the experiments show
asymmetry with respect to ϕ ¼ 1=2, which cannot be
explained based on surface tension.
The only other possibility to explain the ϕ-Q relationship

in the experiment at lowerQ0 is the different upstream flow
profile of the tube compared to a point sink. In an ideal
point sink, the flow is always radial in its vicinity, drawing
fluids equally from all directions. For a capillary tube,
however, the fluid it withdraws depends on the Reynolds
number [9]. We define the Reynolds number as Re1 ¼
ρ1Q0=ðμ1R0Þ. At Re1 ¼ 1 the fluid mainly enters directly
from the front of the tube as a result of the viscous effects
near the wall. At Re1 ¼ 100, the momentum of the fluid is
significant so that the flow becomes more radial and more
fluid from the rear of the tube can be withdrawn [9], which
better approximates an ideal point sink.
We hypothesize that in a tube-based selective with-

drawal, besides the dimensionless Q that regulates ϕ as
in a point sink, Re1 also influences ϕ through changing the
external flow profile. Because ϕ as a function of H has a
simple linear relationship for all Q0 [Fig. 3(a)], we plot Q
versus Re1 at ϕ ¼ 0 and 1, as shown in Fig. 3(c). The result
agrees with the findings inferred from [9]: beyond Re1 of
about 300, the Q values for ϕ ¼ 0 and 1 converge,
suggesting a symmetrical relationship when the capillary
is placed above or below the interface that can only result
from a radial external flow around the tube. In another fluid
system with four times the viscosities and 16 times the
interfacial tension of the ATPS system, the Q values for
ϕ ¼ 1 collapses with the ATPS system as a function of
Re1. In another fluid system with λ ¼ 0.08, γ ¼ 6.0 mN=m
(data not shown) theQ values converge earlier at Re1 ¼ 60.

FIG. 3. (a) Entrainment ratioϕ versus capillary heightH using a
capillary with R0 ¼ 150 μm in ATPS system. Filled symbols
representH < 0 andhollowsymbols representH > 0. (b)ϕversus
Q for the same data in (a). Black lines are the simulation result
reported by Lister (Eq. 6.4 in Ref. [8]). (c) Q versus Re1 at ϕ ¼ 0
and ϕ ¼ 1 for the ATPS and 1-decanol (top)–63 wt % glycerol
aqueous solution (bottom) on the boundary of the E regime.
ATPS: μ1 ¼ 3.41 mPa s, μ2 ¼ 2.86 mPa s, γ ¼ 0.30 mN=m,
Δρ ¼ 310 kg=m3; 1-decanol–63 wt % glycerol-water:
μ1 ¼ μ2 ¼ 12.0 mPa s, γ ¼ 5.0 mN=m, Δρ ¼ 330 kg=m3.
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We note that the analysis by Lister is conducted under the
assumption that l ≪ H. The agreement on the ϕ-Q
relationship between the low-Reynolds-number simulation
and our experimental results at high Re1 suggests that the
assumption can be relaxed.
In Fig. 2(e), Q�

0 controls the minimum Q0 for the
entrainment (E) regime. Because the entrainment cannot
be obtained by decreasingH at Q�

0, gravity is a subordinate
factor. A more important factor that affects Q�

0 is the
restoring force from the surface tension. When the fluid
forms a jet in the capillary, the typical viscous stress from
the top phase μ1Q0=R3

0 has to overcome the minimum
downward capillary pressure γ=R0. The ratio of the two
stresses is the capillary number Ca1 ¼ Q0μ1=ðγR2

0Þ. A third
factor is the flow profile around the capillary that depends
on Re1. At small Re1 only the fluid from the front of the
capillary enters the tube, which is occupied by the
bottom phase when the tube is close to the interface.
Together, Ca1 and Re1 regulate the value of Q�

0. For better
presentation of the data we use the Ohnesorge number
(Oh1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ca1=Re1
p ¼ μ1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1γ1R0

p
) instead of Re1.

To confirm our analysis, we measured Q�
0 in a range of

different fluids and capillaries. The experimental entrain-
ment results obtained using fluids with varying γ, μ1, and
viscosity ratio μ2=μ1, are reported as a function of Ca1 and

Oh1 in Fig. 4. The evolution of the interface asH decreases
is shown in the insets of Fig. 4The top panels represent the
filled symbols, and the bottom panels represent the open
symbols. Four fluid systems are used in Fig. 4 with γ
ranging from 0.3 to 40 mN=m and μ1 ranging from 1 to
1000 mPa s, while μ2 is kept constant at 1 mPa s, so that
10−3 < λ < 1. The sole involvement of the top phase in the
scaling relationship in Eq. (2) indicates the dominant effect
of the top phase properties in the range of λ tested.
We take the transition flow rate Q�

0, indicative of the
triple point in Fig. 2(e), as the middle point between the
nearest open and closed symbols of each type. Q�

0 is fitted
as a power law of Oh1:

Ca�1 ¼
Q�

0μ1
γR2

0

¼ cOhα1: ð2Þ

The prefactor is found to be c ¼ 0.38� 0.08 and the
exponent α ¼ 0.50� 0.07. Equation (2) is plotted as the
solid line in Fig. 4. Rearranging Eq. (2) leads to a
dimensional expression for Q�

0

Q�
0 ¼ 0.38

γ3=4R7=4
0

ρ1=41 μ1=21

; ð3Þ

where decimals are expressed in the simplest fractions for
clarity. For the fluids and capillaries tested in Fig. 4, the
value of Q�

0 ranges from 0.05 to 25 ml=min while H at Q�
0

stays in a small range between 200–400 μm. The Bond
number stays between 0.01 < ℬ < 1, indicating the dom-
inant or comparable influence of surface tension to gravity
near Q�

0. It is thus reasonable to neglect gravity as a first-
order approximation.
In this Letter, we demonstrate that once the flow near the

tube becomes nearly radial beyond Reynolds number of
100, the entrainment flow from the tube effectively behaves
like a point sink even when R0 > H. Where the T-E, T-B,
and E-B borders meet in the complete H-Q0 phase
diagram, analogous to a thermodynamic triple point, a
critical withdrawal flow rate Q�

0 is identified. Further
research is needed to investigate the coupling between
the viscous stress and the region of influence near Q�

0 and
the entrainment flow rate influenced by λ.
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