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We develop a computational framework for identifying bounds to light–matter interactions, originating
from polarization-current-based formulations of local conservation laws embedded in Maxwell’s
equations. We propose an iterative method for imposing only the maximally violated constraints, enabling
rapid convergence to global bounds. Our framework can identify bounds to the minimum size of any
scatterer that encodes a specific linear operator, given only its material properties, as we demonstrate for the
optical computation of a discrete Fourier transform. It further resolves bounds on far-field scattering
properties over any arbitrary bandwidth, where previous bounds diverge.

DOI: 10.1103/PhysRevLett.125.263607

Nanoscale fabrication techniques, computational inverse
design [1–4], and fields from silicon photonics [5–8] to
metasurface optics [9–12] are enabling transformative use of
an unprecedented number of structural degrees of freedom in
nanophotonics. An emerging critical need is an understand-
ing of fundamental limits to what is possible, analogous to
Shannon’s bounds for digital communications [13,14]. In
this Letter, we identify an infinite set of local conservation
laws that can form the foundation of a general framework for
computational bounds to light–matter interactions. We show
that this framework enables calculations of bounds for two
pivotal applications, for which all previous approaches yield
trivial (e.g., divergent) bounds. First, we identify computa-
tional bounds on the minimum size of a scatterer encoding
any linear operator, demonstrated for an analog optical
discrete Fourier transform (DFT). Second, we identify
bounds on maximum far-field extinction over any band-
width, resolving an important gap in power–bandwidth
limits [15]. The local power-conservation laws identified
here have immediate ramifications across nanophotonics;
more generally, they appear to be extensible to linear partial
differential equations across physics.
Bounds, or fundamental limits, identify what is possible

in a complex design space. Beyond Shannon’s bounds,
well-known examples include the Carnot efficiency limit
[16], the Shockley–Queisser bounds in photovoltaics [17],
the Bergman–Milton bounds in the theory of composites
[18–20], and the Wheeler–Chu bounds on antenna quality
factor [21,22], among many more. In electromagnetism, for
a long period of time there were very few bounds on general
response functions (with a notable exception being sum
rules on total response [23–26]), seemingly due to the
complex and nonconvex nature of Maxwell’s equations.
Yet a flurry of recent results have suggested the possibility
for general bounds [15,27–42], for quantities ranging from
single-frequency scattering to radiation loss of free elec-
trons, for bulk and 2D materials. Underlying all of these

results is one or two energy-conservation laws, arising in
various formulations of Maxwell’s equations. Additional
bounds have been identified via Lagrangian duality [43,44]
or physical approximations [45–47]. Yet there are pivotal
applications for which all of these approaches either do not
apply or offer trivial bounds.
Here we identify an infinite set of conservation laws that

must be satisfied by any solution of Maxwell’s equations.
These laws are “domain oblivious”; i.e., once a designable
region is specified, the constraints are valid for any possible
geometric structure in that region. Moreover, each con-
servation law is a quadratic form that is amenable to
semidefinite relaxation [48,49]. To accelerate the bound
computations we develop an algorithm that automatically
selects ideal constraints to impose. These bounds lack the
intuition of analytical expressions, but they can provide
significantly tighter limits.
Local conservation laws.—To start, we derive local

conservation laws that must be satisfied by any Maxwell
solution. These conservation laws manifest the complex
Poynting theorem [50] over any subdomain of a scatterer, but
only when formulated in terms of induced polarization
currents do they exhibit properties that enable global bounds.
We consider any scattering problem comprising arbitrary
sources and arbitrary electric and/or magnetic material
properties. We use six-vector notation, concatenating electric
and magnetic three-vectors for more concise expressions; for
example, the electromagnetic fields ψ and polarization
currents ϕ are given by ψ ¼ ðEHÞ and ϕ ¼ ðPMÞ, and we
use dimensionless units in which the speed of light is 1.
Physically, the conservation laws that form the founda-

tion of our bounds arise from the complex Poynting
theorem [50]. As depicted in Fig. 1, Poynting’s theorem
must apply not only globally over an entire scatterer, but
also locally at any point within. We can rewrite the usual
Poynting theorem (a function of the electromagnetic fields)
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in terms solely of the polarization currents ϕ induced across
the scatterer. Ignoring reactive power momentarily, and
considering only real power flow, the statement that at any
point x the local extinction must equal local absorption plus
scattered power can be written:

−
ω

2
Im½ϕ†ðxÞψ incðxÞ� ¼

ω

2
ϕ†ðxÞIm½−χ−1�ϕðxÞ

þ ω

2
Im

�
ϕ†ðxÞ

Z
V
Γ0ðx; x0Þϕðx0Þdx0

�
; ð1Þ

where the first term corresponds to extinction, the second
term to absorption, and the last term to scattered power.
Equation (1) is the well-known optical theorem [50–52],
applied to an infinitesimal bounding sphere at point x. We
can generalize this expression in three ways, physically
argued here and rigorously justified in the Supplemental
Material (SM) [53]. First, we can allow for a complex-
valued frequency and replace ω with its conjugate ω�,
which makes no difference at real frequencies but will be
useful for bandwidth-averaged scattering below. Second,
we can remove the imaginary part from Eq. (1), which then
manifests the complex Poynting theorem, including reac-
tive power conservation. Finally, instead of considering
only a single position x, we can consider any linear
combination of points as determined by taking the integral
of Eq. (1) against a weighting tensor DðxÞ (which also
isolates the polarization directions). Taken together, these
generalizations comprise the constraints

−
ω�

2

Z
V
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¼ω�
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�Z
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�
:
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Roughly speaking, Eq. (2) represents a linear combination of
pointwise equalities from the complex Poynting theorem. To
illuminate the algebraic structure of Eq. (2), we can strip
away the integrals and position dependencies by assuming
any standard numerical discretization [62], in which case ϕ
and ψ inc become vectors andD, Γ0, and χ are matrices. After
discretization, Eq. (2) is given in matrix notation by

ω�

2
ϕ†DΓ0ϕ −

ω�

2
ϕ†Dχ−1ϕ ¼ −

ω�

2
ϕ†Dψ inc: ð3Þ

The complex-Poynting-theorem-based conservation laws of
Eqs. (2) and (3) satisfy two key properties that enable global
bounds over all possible designs. First, they are domain
oblivious: within a designable region, Eqs. (1)–(3) must
apply at every point regardless of whether it is part of the
scattering domain or the background. Second, they
are quadratic forms of the polarization currents, and therefore
amenable to semidefinite programming, as we discuss below.
Computational bounds.—Any electromagnetic power-

or momentum-flow objective function f will be a linear or
quadratic real-valued function of the polarization currents
ϕ, which in our matrix notation can be written as
fðϕÞ ¼ ϕ†Aϕþ Reðβ†ϕÞ þ c, where A is any Hermitian
matrix and β and c are any vector and constant, respec-
tively. To identify bounds for any objective f, we replace
the Maxwell equation constraint (which is not domain
oblivious) with a finite number of constraints of the form of
Eq. (3), each with a uniqueDmatrix given byDj for the jth
constraint. Then, a bound on the maximum achievable f is
given by the solution of

maximize
ϕ

fðϕÞ ¼ ϕ†Aϕþ Reðβ†ϕÞ þ c

such that ϕ†RefDjω
�ðΓ0 − χ−1Þgϕ ¼ −Reðω�ϕ†Djψ incÞ:

ð4Þ
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FIG. 1. (a) A freeform, homogeneous photonic scatterer within a designable region (outer dashed circle). Previous bounds utilized
global conservation laws (large arrows). Here, we introduce a polarization-current-based formulation of local conservation laws that
provide an infinite set of constraints for the identification of global bounds to light–matter interactions. (b) Example of local constraints
(green, purple, red) tightening bounds from global constraints only (blue), for maximum absorption from a material with permittivity
ε ¼ 12þ 0.1i in a region with diameter d ¼ 0.18λ. Our iterative method of selecting maximally violated constraints rapidly converges.
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The domain of the optimization variable ϕ is the space
of coefficients of the basis functions extending over an entire
designable region [e.g., the dashed circled cylinder in
Fig. 1(a)]. We have taken only the real part of Eq. (2)
because D → iD accounts for the imaginary part.
Equation (4) is a key result: it is a formulation of maximum
response, subject to all possible local-power conservation
laws, as a quadratically constraint quadratic program, i.e., a
QCQP optimization problem [49,63]. By virtue of the
domain-oblivious property of the constraints, it applies to
all possible designs within the designable domain. A bound
on the solution of Eq. (4) can be found by standard
techniques that relax the original, quadratic program to a
higher-dimensional linear program over semidefinite matri-
ces, i.e., a semidefinite program [48,49], which can be solved
by interior-point methods [63,64]. Such transformations of
QCQPs have led to meaningful bounds in many areas of
engineering [49,64–68]; we leave the details of the trans-
formation of Eq. (4) to the SM [53]. The final solution
represents a global, unsurpassable bound for any electro-
magnetic scattering response.
It is computationally prohibitive to impose the infinitely

many constraints of Eq. (2). We propose an iterative
algorithm for identifying which subset of constraints to
use. One should start with the two D matrices that
correspond to global power conservation, i.e., the identity
tensor and the identity tensor multiplied by i, which
correspond to reactive- and real-power conservation,
respectively. (The latter leads to a positive semidefinite
quadratic form and is crucial to restricting the magnitude of
the solutions.) As a first iteration, we use only those two D
matrices to find an initial bound for Eq. (4), as well as the
first-iteration optimal polarization currents, ϕopt;1. From
those currents, we can identify out of all possible remaining
D-matrix constraints which ones are “most violated” by
ϕopt;1, i.e., which constraint is farthest from zero (under the
L2 norm). The constraint for the corresponding D matrix is
then added to the constraint set, and a second iteration is
run, identifying new bounds and new optimal polarization
currents. This process proceeds iteratively until conver-
gence. Straightforward linear algebra shows (cf. SM [53])
that after iteration j, with optimal currents ϕj, the next
constraint to add is the one with D matrix,

Djþ1 ¼ ωdiag½ϕopt;jϕ
†
opt;jðΓ0 − χ−1Þ† þ ϕopt;jψ inc�; ð5Þ

where “diag” is the diagonal (in space) matrix comprising
the diagonal elements of its matrix argument. Figure 1(b)
demonstrates the utility of this method of maximally
violated constraints for bounding the TE absorption cross
section σabs of a dielectric scatterer of any shape occupying
a wavelength-scale cylindrical design region. The design-
able region need not be symmetric; in the SM [53] we
include an example with a triangular region. Whereas
the global constraints (blue) are significantly larger than

the response of a cylindrical scatterer (black), including
local constraints shows that one can clearly identify tighter
bounds. Yet both randomly chosen D matrices (green) and
spatially pointwise, delta-function-based D matrices (pur-
ple) show slow convergence. The iterative method via
maximally violated constraints shows rapid convergence,
requiring only two local constraints. The spatial patterns of
both the optimal current distribution and local constraints
are shown in the SM [53]. From this method we can clearly
identify the cylinder as a globally optimal structure for that
material and design region.
S-matrix feasibility.—To demonstrate the power of this

framework, we consider a fundamental question in the
fields of analog optical computing [69–73] and metasur-
faces [9–11]: what is the minimum size of a scatterer that
achieves a desired scattering matrix Starget? A generic setup
is depicted in Fig. 2(a). The target S matrix could manifest
lens focusing or metaoptical computing, for example.
The objective, then, is to minimize the relative difference
between the achievable and target S matrices, i.e.,
fobj ¼ kS − Stargetk2=kStargetk2, where k · k denotes the
Frobenius norm. It is straightforward to write this objective
in the form appearing in Eq. (4), as the S matrix elements
are linear in the polarization currents and the objective is a
quadratic form (cf. SM [53]). Then, to determine the
minimum feasible size for implementing Starget, we can
compute the bound on the smallest error between S and
Starget, and define an acceptable-accuracy threshold (1%)
below which the device exhibits the desired functionality
with sufficient fidelity.
We apply our framework to two such problems, both of

which comprise two-dimensional, nonmagnetic scatterers
with refractive index n ¼ ffiffiffiffiffi

12
p

, discretized by the discrete
dipole approximation [74,75]. In the first, we identify the
smallest domain within which a scatterer can possibly act
as a discrete Fourier transform operator over three TE
cylindrical-wave channels (cf. SM [53]). The DFT is the
foundation for discrete Fourier analysis and many other
practical applications [76]. With uniform frequencies and
nonuniform sample points t1, t2, and t3 (and t1 is fixed as a
reference to be t1 ¼ 0), a target S matrix that acts as a DFT
can be represented as [77]

Stargetðt2; t3Þ ¼
1ffiffiffi
3

p

0
B@

1 1 1

1 e−2πit2=3 e−2πit3=3

1 e−4πit2=3 e−4πit3=3

1
CA: ð6Þ

Figure 2(b) shows the bound-based feasibility map for
implementing such an S matrix. Each point in the grid
represents a unique DFTmatrix (prescribed by the values of
t2 and t3), and the color indicates the smallest diameter d,
relative to wave number k, of a structure that can possibly
exhibit the desired DFT-based scattering matrix (at 99%
fidelity). There is no structure, with any type of patterning,
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that can act as a DFT matrix if its diameter is smaller than
that specified in Fig. 2(b). Thus our approach enables
bounds on the minimal possible size of an optical element
implementing specific functionality. A related calculation is
shown in Fig. 2(c). In that case we consider a target S
matrix for a power splitter, directing a single incident wave
equally into outgoing spherical-wave channels index by m
(wherem is the angular index,m ¼ −M;…;M). We depict
the minimum diameter as a function of the number of
scattering channels, both for the global-constraint-only
approach (blue) and our new approach with local con-
straints. (The error bar indicates a numerical instability in
the global-constraint-only approach, cf. SM [53].) Whereas
the global-constraint-only approach unphysically con-
verges to wavelength scale as the number of channels
increases, our new approach predicts an unavoidable
increase in the diameter of the power splitter, representing
the first such capability for capturing minimum-size
increases with increasing complexity.
Far-field power–bandwidth limits.—The local-constraint

bound framework resolves another outstanding question:
how large can far-field scattering be over an arbitrary
bandwidth Δω? In Ref. [15], bounds for near-field aver-
age-bandwidth response were derived using global con-
straints at a complex frequency, yet it was noted that the
same technique fails in the far field (it exhibits an unphysical
divergence). A feature of Eq. (2) is that the local conserva-
tion laws can also be applied at complex frequencies, as the
inclusion of the conjugate frequency ω� leads to operators
that are positive semidefinite over the whole upper half of the
complex-frequency plane, by passivity (cf. SM [53]).
A prototypical example to consider is the maximum

extinction cross section σextðωÞ from a given material over
a bandwidth Δω. Using contour-integral techniques from
Refs. [15,78], the average extinction around a center
frequency ω0, over a bandwidth Δω, as measured by

integration against a Lorentzian window function, HðωÞ ¼
f½Δω=π�=½ðω − ω0Þ2 þ Δω2�g, can be written as the
evaluation of a single scattering amplitude at a complex
frequency ω̃ (cf. SM [53]):

hσexti ¼
Z þ∞

−∞
σextðωÞHðωÞdω

¼ Im½ω̃ψT
incð−ω̃Þϕðω̃Þ�; ð7Þ
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FIG. 2. (a) Photonic devices are often designed to achieve a specific “target” S matrix in a compact form factor. Our bounds enable
identification of the minimum diameter d of any such device (relative to wave number k), for (b) nonuniform DFT matrix
implementation (t2 and t3 are parameters of the DFT matrix) and (c) power splitters for a single input to 2M þ 1 outgoing channels. In
(b), each point in the image represents a unique DFT matrix, and the colors indicate the minimum diameter for possibly achieving that
scattering matrix. In (c) it is evident that local constraints are required to identify feasible design regions as the required functionality
increases in complexity. In (b) and (c) the channels are TE cylindrical waves and the material has refractive index n ¼ ffiffiffiffiffi
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FIG. 3. Bounds on maximal bandwidth-averaged extinction,
hσextimax, as a function of bandwidth Δω for a lossless Lorentz–
Drude material with plasma frequency ωp and oscillator fre-
quency ωc ¼ 0.3015ωp, which is chosen such that the permit-
tivity is 12 at a center frequency ω0 ¼ 0.05ωp. The bounds are
normalized to the geometric cross section σgeo of the designable
region, a cylinder with diameter d ¼ 3=ωp. While known sum
rules (black) and global-constraint bounds (blue) are loose for
many bandwidths, utilizing local constraints (convergence shown
in inset) enables apparently tight bounds across all bandwidths.
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where ω̃ ¼ ω0 þ iΔω. Equation (7) is a linear objective
function of the form required by Eq. (4), evaluated at a
complex frequency. By imposing the global and local
conservation constraints at the complex frequency ω̃, we
can identify bounds to the bandwidth-averaged far-field
response. Figure 3 shows the results of such a computation
for a lossless Lorentz–Drude material (with plasma fre-
quencyωp) in a designable region with diameter d ¼ 3=ωp.
Included in the figure is a bound on average extinction from
a known all-frequency sum rule [23,79] (black), which is
descriptive in the infinite-bandwidth limit, and the global-
constraint-only bounds (blue), which are useful in the
small-bandwidth limit, but each diverges in the opposite
limits. Through the use of global and local constraints (red),
we can identify bounds over any bandwidth of interest, and
we find that a cylindrical scatterer is nearly globally
optimal.
Conclusions.—We have shown that local conservation

laws enable computational bounds to light–matter inter-
actions. The demonstrated bounds for optical analog
computing and power–bandwidth limits are suggestive of
a wide array of future possible applications. From the
perspective of identifying feasible design volumes for target
scattering matrices, a natural extension is to large-area,
broadband metalenses. It is clear that there are trade-offs
between diameter, bandwidth, and efficiency, but the
optimal architecture and form factor is unknown. Our
bounds may resolve the Pareto frontier. Similarly, the
power–bandwidth limits have natural applications in photo-
voltaics [45,80–82] and ultrafast optics [83–85].
There are two key areas for improvement looking

forward. The first is to nonlinear optics and nonlinear
physics, where conservation laws analogous to Eq. (3)
would not have the quadratic structure that enabled semi-
definite-programming-based bounds here. The second is to
identify faster computational schemes, such as those used
in “fast solvers” [86–88], as the computational cost of
semidefinite relaxations prohibited our exploration of
structures far larger than wavelength scale. Overcoming
both of these limitations would open interesting possibil-
ities for applications ranging from quantum dynamics to
large-scale metaoptics.
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