
 

Chiral Waveguide Optomechanics: First Order Quantum Phase Transitions
with Z3 Symmetry Breaking

D. D. Sedov,1 V. K. Kozin,2,1 and I. V. Iorsh1
1Department of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia

2Science Institute, University of Iceland, Dunhagi-3, IS-107 Reykjavik, Iceland

(Received 8 September 2020; accepted 9 December 2020; published 31 December 2020)

We present a direct mapping between the quantum optomechanical problem of the atoms harmonically
trapped in the vicinity of a chiral waveguide and a generalized quantum Rabi model, and we discuss the
analogy between the self-organization of atomic chains in photonic structures and Dicke-like quantum
phase transitions in the ultrastrong coupling regime. We extend the class of the superradiant phase
transitions for the systems possessingZ3 rather than parityZ2 symmetry and demonstrate the emergence of
the multicomponent Schrödinger-cat ground states in these systems.
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The arrays of quantum emitters coupled to a common
one-dimensional photonic reservoir are the main object
studied by the emerging field of waveguide quantum
electrodynamics (WQED) [1,2]. The field currently expe-
riences a rapid progress due to developments in quantum
technologies allowing realizations of this type of system
based on a variety of platforms including superconducting
qubits [3,4], cold atoms [5], or semiconductor quantum
dots [6]. The key features of waveguide quantum optical
setups are the emergent long-range correlations between
the qubits harnessed through the exchange of the propa-
gating waveguide photons and the inherent open nature of
these systems provided by the leakage of the photons.
Recently, the setups comprising the ring-shaped topo-
logical waveguides have been suggested [7,8], which
combine the long-range interqubit correlations and quasi-
hermiticity. These setups could be particularly useful for
the emulation of the strongly correlated quantum models
since the latter are usually Hermitian ones.
One of the factors limiting the diversity of the quantum

many-body phenomena supported by the WQED setups is
the relatively small radiative coupling of the individual
qubits to the photonic mode as compared to the transition
frequencies. This leaves us in the weak coupling region of
the light-matter interaction. At the same time, reaching the
regime of the ultrastrong coupling [9,10] at which the
coupling strength becomes comparable with the transition
frequencies would enable the access to a plethora of
fascinating quantum phenomena such as nonvacuum and
correlated ground states, as well as possible application in
quantum memory [11] and quantum metrology [12,13].
Also, it turns out that the emergence of superradiant phases
is a general property of the ultrastrong coupling limit [14].
In this Letter, we show that the consideration of the

atomic mechanical degree of freedom opens the route
toward the realization of the ultrastrong coupling regime

in the WQED structures. While the joint dynamics of
mechanical and internal degrees of freedom has been
considered previously, the analysis relied on the approx-
imations of either classical dynamics of both positions and
polarizations of atoms [15] or the truncated Hilbert space
for the phonons [16]. In this Letter, we provide a rigorous
mapping from the optomechanical problem to the quantum
Rabi model and show that the self-organization of atoms
predicted in the classical picture corresponds to the Rabi-
like phase transition known to appear in the ultrastrong
coupling regime. Since there has recently been tremendous
progress in finding analytical solutions of the Rabi model
[17], we believe that the presented mapping is of substantial
importance for the further developments of the quantum
optomechanics in the regime of strong optomechanical
coupling.
We consider the system depicted in Fig. 1: N qubits are

placed in the laser harmonic traps on top of the chiral ring

FIG. 1. Geometry of the structure: an array of two-level atoms
placed in the vicinity of the chiral ring resonator. The parabolic
trapping potential is shown with a shaded region only for one
atom.
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resonator. The qubit can absorb or emit a waveguide
photon, and the radiative relaxation to the far field is
suppressed. The Hamiltonian of the system reads

Ĥ ¼
X
k

ωkĉ
†
kĉk þ

XN
j¼1

ωxσ
þ
j σj þ

XN
j¼1

Ωâ†j âj þ Ĥint; ð1Þ

where ωk ¼ vk is the dispersion of the chiral waveguide
modes that is assumed to be linear, v is the speed of light in
the waveguide, ωx is the qubit resonance frequency, and Ω
is the optical trap phonon energy; âj and â

†
j are annihilation

and creation phonon operators, respectively. The inter-
action Hamiltonian reads

Ĥint ¼ g
X
k;j

½σ†j ĉkeik½Rϕjþxj� þ H:c:�; ð2Þ

where g is the Rabi splitting; R is the radius of the ring; xj
corresponds to the deviation of the jth atom from its
equilibrium position, which is equal to u0ðâj þ â†jÞ; and
u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2MΩÞp

is the quantum of the mechanical
motion, where M is the mass of the qubit. Actually, the
optical spectrum of the ring is discrete rather than con-
tinuous, with the frequency difference between the modes
given by δω ¼ v=R. However, for a large resonator when
v=R ≪ ωx, the limit of the continuous spectrum can be
employed.
We then integrate out the waveguide degrees of freedom

by performing the Schrieffer-Wolff transform [18] to obtain
the effective Hamiltonian up to the second order of the
qubit-photon coupling g:

Ĥeff ¼
X
j

ωxσ
þ
j σj þ

X
j

Ωâ†j âj

−
Γ0

2

X
i<j

½iσþi σjeiqRϕijeiηðâiþâ†i−âj−â
†
j Þ þ H:c:�; ð3Þ

where q ¼ ωx=v, Γ0 ¼ g2=v is the radiative decay rate of a
single qubit, and η ¼ qu0 is the dimensionless optome-
chanical interaction. In deriving Eq. (3), we used the
Markov approximation, neglecting the frequency
dispersion in the phase factor (k ≈ q). The Markov approxi-
mation holds for RΓ0=v ≪ 1. In stark contrast to the
WQED case, the resulting Hamiltonian is Hermitian.
This is both due to the fact that, unlike the case of an
infinite waveguide, our system is a closed one and because
the radiation to the far field has been neglected. The latter
approximation can be adopted when the radiative coupling
to the waveguide mode Γ0 is much stronger than that to the
far-field continuum Γ0. This can be achieved in the photonic
crystal waveguide geometries, where Γ0=Γ0 > 9 has been
experimentally reported [19].
The qubit excitation energy ωx is the largest energy scale

of the problem. Since the Hamiltonian commutes with the

excitation number operator, we can safely project the
Hamiltonian to the subspace with a single excitation. In
this case, the qubit subspace is spanned by N states
corresponding to excitation localized at each of the N
qubits. We assume the equidistant spacing of the harmonic
traps, i.e., ϕiþ1;i ¼ ϕ.
The third term in Eq. (3) contains the exponent of the

bosonic operators, making it highly nonlinear in the region
η ≈ 1. It is instructive to estimate the experimentally relevant
range of parameters of the model. Parameter η is defined by
the ratio of the length scale of the atomic motion u0 and the
wavelength of the photon in the waveguide λ: η ¼ 4πu0=λ.
The coherence of the atomic motion is preserved at the scale
of the atomic de Broglie wavelength λ ¼ ℏ=pth, where the
thermal momentum pth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3MkBT

p
. Thus, the condition of

the coherent atomic motion implies that u0 < ℏ=pth. For the
lithium atoms and the resonant wavelength of approximately
700 nm, the value of η ¼ 1 is achieved at T ¼ 640 nK,
which is a temperature that has been achieved in recent cold-
atom experiments (see the review [20] and references
within). The corresponding phonon energy is then approx-
imately 2.4 kHz. The radiative decay rate Γ0 can be tuned in
a wide range of frequencies from zero to the gigahertz.
Therefore, the range of Γ0=Ω; η ∼ 1 can be achieved in the
state of the art cold-atom experiments. Thus, it is relevant to
explore the properties of the Hamiltonian [Eq. (3)] outside
the small η regime.
We introduce the unitary transformation TN for the case

of N qubits, which transforms Eq. (3) to a more familiar
form. The general expression for TN can be found in
Supplemental Material [21]. For the case of two qubits, T2

reads T̂Ĥeff T̂
†, where

T ¼ 1ffiffiffi
2

p
�
ie−iηx̂1 e−iηx̂2−iqRϕ

−ieiηx̂1 e−iηx̂2−iqRϕ

�
; ð4Þ

where x̂i ¼ âi þ â†i , and the transformed Hamiltonian

T̂2Ĥeff T̂2
† ¼ Ω

�
â†CMâCM þ â†dâd þ

η2

2

þσx
ηffiffiffi
2

p ðiâd − iâ†dÞ −
Γ0

2Ω
σz

�
; ð5Þ

âCM ¼ ð1= ffiffiffi
2

p Þðâ1 þ â2 þ iηÞ corresponds to the center-
of-mass qubit motion, and âd ¼ 1=

ffiffiffi
2

p ðâ1 − â2Þ
corresponds to the relative motion of two qubits. The
center-of-mass momentum operator is shifted from the
equilibrium position on η. This is due to the unidirectional
propagation of the chiral waveguide photon, which pushes
the qubits as a whole in one direction. Then, we see that the
spectrum of the problem does not depend on the static
phase difference ϕ, which is typical for the chiral wave-
guide quantum optical setups [22,23]. Finally, we see that
up to the center-of-mass kinetic energy term, which
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decouples from the rest of the system, the effective
Hamiltonian is exactly the one corresponding to the
quantum Rabi model. The radiative decay Γ0 plays the
role of the resonant transition energy, and the η defines
the effective coupling strength. The case of strong opto-
mechanical interaction η > 0.1

ffiffiffi
2

p
thus directly maps to the

ultrastrong coupling (USC) regime. It is known that in
the USC and deep-strong coupling regimes (η >

ffiffiffi
2

p
) of the

Rabi model, the system is characterized by the nonvacuum
ground state jΨGi, which can be roughly approximated by
the superposition of the coherent states [24]

jΨGi ≈
1ffiffiffi
2

p ðjþi ⊗ jαi þ j−i ⊗ j − αiÞ;

where j � αi are the bosonic coherent states, and j�i ¼
1=

ffiffiffi
2

p ðj↑i � j↓iÞ are the superpositions of the ground and
excited qubit states. Also, the direct mapping to the Rabi
model is valid only in the purely chiral case. However, as we
show in the Supplemental Material (SM) [21], the numeri-
cally obtained spectrum for the nonperfectly chiral wave-
guide is qualitatively very similar to the perfectly chiral case.
For three qubits, the unitary transformation T3 results in

the Hamiltonian [21]

T̂3Ĥeff T̂3
† ¼ ˆ̃Heff ¼ Ĥph þ Ĥq þ Ĥc; ð6Þ

where Ĥph is the phonon kinetic energy given by

Ĥph ¼ Ω
�
â†âþ â†xâx þ â†yây þ

2η2

3

�
; ð7Þ

where â corresponds to the shifted operator of the center-
of-mass motion, â ¼ 1=

ffiffiffi
3

p ðâ1 þ â2 þ â3 þ iηÞ, and âx ¼
1=

ffiffiffi
6

p ð−â1 − â2 þ 2â3Þ and ây ¼ 1=
ffiffiffi
2

p ðâ1 − â2Þ are oper-
ators of normal modes. The qubit Hamiltonian Ĥq reads

Ĥq ¼ −
ffiffiffi
3

p
Γ0

2
λ̂3; ð8Þ

where λ̂i is the 3 × 3 Gell-Mann matrix. Finally, the
coupling term Ĥc reads

Ĥc ¼ −
Ωηffiffiffi
3

p ½p̂xðλ̂1 þ λ̂4 þ λ̂6Þ þ p̂yð−λ̂2 þ λ̂5 − λ̂7Þ�; ð9Þ

where p̂i ¼ i=
ffiffiffi
2

p ðâi − â†i Þ. The Hamiltonian ˆ̃Heff (up to
the decoupled center-of-mass motion) describes the two-
dimensional Bose-Einstein condensate (BEC) of spin 1
particles localized in a harmonic trap (given by Ĥph) and in
a perpendicular magnetic field Ĥq. The term Ĥc describes
the spin-orbit coupling (SOC) for spin 1 particles. This type
of SOC has been introduced for the BECs of spin particles
previously [25,26]. Thus, we highlight a link between the
waveguide optomechanical systems and BEC physics.

Despite seeming similarity, the Hamiltonian in Eq. (6)
is qualitatively different from the Dicke model
Hamiltonian. Namely, the qubit operators do not obey the
angular momentum commutation relations. Moreover,
the Hamiltonian [Eq. (6)] possesses global Z3 symmetry.
Consider the unitary operator

R̂ ¼ e−iL̂zð2π=3Þ ⊗

 
1 0 0

0 ei4π=3 0

0 0 ei2π=3

!
; ð10Þ

where L̂z ¼ x̂p̂y − ŷp̂x is the angular momentum operator.
Operator R̂ obeys R̂2 ¼ R̂†, and thus ½1; R̂; R̂2� form
a group. We note that R̂ ˆ̃HeffR̂

† ¼ ˆ̃Heff , and thus
½R̂; ˆ̃Heff � ¼ 0. Therefore, the eigenstates of R̂ are also
eigenstates of ˆ̃Heff . The three distinct eigenvalues of R̂
are ½1; ei2π=3; ei4π=3�.
We then assume the limit of the classical motion of the

qubits by assuming p̂x and p̂y to be classical variables; and
we find the eigenvalues of the corresponding matrix
Hamiltonian obtained from Eq. (6). We find the ground
state energy by minimizing the smallest eigenvalue with
respect to px and py. Moving to the polar coordinates
ðpx; pyÞ ¼ ðp cos θ; p sin θÞ, we find that the minimum
energy is obtained for cos 3θ ¼ 1. With this condition
fulfilled, the expression for the ground state energy as a
function of p reads

ϵG ¼ 2η2Ω
3

þ
ffiffiffi
3

p
Γ0

2

�
p̃2

2μ
− 2

�
p̃2 þ 1

3

�
1=2

cos

�
γ

3

��
; ð11Þ

where μ ¼ ffiffiffiffiffiffiffiffiffiffi
4=27

p
η2Ω=Γ0, p̃ ¼ 2ηΩ=ð3Γ0Þp, and

γ ¼ arctan ½ð81p̃4 þ 27p̃2 þ 3Þ1=2=9p̃3�. For small p̃, we
can write

ϵG ≈
2η2Ω
3

þ
ffiffiffi
3

p
Γ0

2

�
−1 − p̃3 þ 9p̃4

8
þ μ − 3

2μ
p̃2

�
: ð12Þ

For η ≪ 1, Eq. (12) has a single local minimum at p̃ ¼ 0.

For η > ηc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3

p
Γ0=ð7ΩÞ

q
, it has an additional mini-

mum at p̃c, which for η ≈ ηc can by approximated by

p̃c ≈ ð1=3Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 2=μ

p Þ. Then, for η >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
Γ0=ð2ΩÞ

q
,

there is only a single minimum at p̃c. At η ¼ ηc, the first
derivative of ϵG is discontinuous, which is a hallmark of the
first order quantum phase transition [27].
We plot the dependence of ϵG given by Eq. (11) in

Fig. 2(a). We can see that, indeed, there exists a range of
parameters where there are two local minima signifying the
phase coexistence regime. Thus, the quantum phase tran-
sition (QPT) in the classical limit is indeed of the first order.
This is in stark contrast to the classical limit of the quantum
Rabi model, where the phase transition is of the second
order [28].
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The map of the ϵG in ðpx; pyÞ space is shown in Fig. 2(b).
For the case of η < ηc shown in the left panel, there is a
single minimum corresponding to p̃ ¼ 0. For the η > ηc
(right) panel, three degenerate minima emerge.
Since the QPTs can occur only in the thermodynamic

limit, we shall refine our analysis of the ground state
energy. For that, we first consider that the actual quantum
states corresponding to the minimal energy in the classical
limit are the direct products of the spin states and the
coherent states of the qubit motion at small pc:

jli ≈N c

0
BBB@

p̃c
2

−
�
1 − 5

8
p̃2
c

�
e2iθl

p̃ceiθl

1
CCCA ⊗ jp̃c cos θl; p̃c sin θli;

ð13Þ

where l ¼ 0, 1, 2; θl ¼ 2πl=3; andN c is the normalization
factor. It is evident that hlj ˆ̃Heff jli yields the classical
mean-field ground state energy. However, these states
cannot be the eigenstates of Hamiltonian ˆ̃Heff since
they are not eigenstates of operator R̂. Namely, R̂jli ¼
j½ðlþ 1Þ mod 3�i. Moreover, due to nonorthogonality of
the coherent states, hl0j ˆ̃Heff jli ≠ Eδl0;l and hl0jli ≠ δl0;l. We
thus can solve the characteristic equation for the eigen-
values det½hl0j ˆ̃Heff jli − Ehl0jli� ¼ 0. The explicit form of
the characteristic equation is cumbersome and presented in
the Supplemental Material [21]. However, the nondiagonal

elements of the matrix representation of the Hamiltonian
are proportional to the overlap of the coherent states, which
is proportional to exp½−3p̃2

c�. The explicit form of the
eigenstates can be found from the symmetry considera-
tions. Namely, the eigenstates should also be the eigenstates
of the operator R̂. We then can easily find the mutually
orthogonal linear superpositions of states jli that satisfy this
condition. Namely, the ground and two excited states are
given by

jΨGi ¼
1ffiffiffi
3

p ½j0i þ j1i þ j2i�;

jΨE1i ¼
1ffiffiffi
3

p ½j0i þ e4iπ=3j1i þ e2iπ=3j2i�;

jΨE2i ¼
1ffiffiffi
3

p ½j0i þ e2iπ=3j1i þ e4iπ=3j2i�: ð14Þ

The spectrum of ˆ̃Heff as a function of the coupling
strength η is shown in Fig. 3 for the case of the ground
state of the center-of-mass degree of freedom n̂CM ¼ 0.
The spectrum has been obtained via the direct numerical
diagonalization by truncating the phonon subspace. We can
see that at large η, the ground state becomes quasidegen-
erate. We also plot the analytically obtained dispersions of
states jΨGi, jΨE1i, and jΨE2i. The first three low energy
states given by Eq. (14) are the analog of the triangular
Schrödinger-cat states [29]. While the Schrödinger-cat
states are generally regarded as extremely fragile with
respect to decoherence, it has been recently revealed that
the two-component cat states appearing in the USC of
the conventional Rabi model appear to be robust to
decoherence and can be used to realize protected quantum
gates with high fidelity [30,31]. Thus, the states jΨ½G;E1;E2�i
as the three-component generalizations of the cat states

(a)

(b)

FIG. 2. (a) Dependency of the ground state energy on p̃ for
different values of the parameter μ; Γ0=Ω ¼ 2.5. (b) Dispersion of
the lowest energy surface in the classical approximation for qubit
motion in the two cases: η ¼ 0.5 and η ¼ 2.0; Γ0=Ω ¼ 2.5, and
ηc ≈ 1.36.

FIG. 3. Eigenenergies of first nine eigenstates of ˆ̃Heff vs
optomechanical coupling η with Γ0=Ω ¼ 0.5. Red dashed lines
show the dispersions of states in Eq. (14), and blue solid lines
show the results of the numerical diagonalization. The vertical
dotted line corresponds to critical optomechanical coupling
ηc ≈ 0.61. For the numerical diagonalization, the phonon sub-
space was truncated with a maximal phonon occupation number
of 100.
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originating in the USC are likely to remain sufficiently
stable and can be used for quantum information processing.
We have shown that the phase transition occurs in the

classical limit. The classical limit can be regarded as a
thermodynamic limit of the vanishing harmonic oscillator
energy Ω [28,32–34]. To explore this limit, we redefine
the energy constants in ˆ̃Heff in the following way: we set
ηΩ → η0 as an independent variable and redefine Γ0 ¼ ξω
and Ω ¼ ω=ξ. The thermodynamic limit is then achieved
for ξ → ∞.
In Fig. 4, we plot the first derivative of the ground state

energy as a function of η0 for ω ¼ 1 and for different ξ. As ξ
increases, this function steepens in the vicinity of η0c. In the
limit of infinite ξ, we would observe the discontinuity of the
∂ϵG=∂η0 just as in the classical limit and the establishment
of the QPT with Z3 symmetry breaking. The Ω → 0 limit
can be regarded as the classical limit of the atomic motion.
Thus, the predicted phase transition corresponds to the
appearance of non-zero phonon occupation in the ground
state and self-organisation of atomic motion due to
the photon mediated inter-atomic interactions. The self-
organization of atoms has been predicted within the
classical approach in WQED systems [15]. We thus reveal
the direct connection of the self-organization phenomena
and quantum phase transitions similar to that occurring in
the Rabi model.
To conclude, we have established a direct mapping

between the quantum optomechanical setup in the chiral
waveguide and the generalization of the quantum Rabi
model. Whereas for two qubits, the system directly maps to
the quantum Rabi model; already for the case of three
qubits, the system possesses unconventional Z3 symmetry,
exhibiting multicomponent Schrödinger-cat ground states
as well as Z3 symmetry breaking first order phase tran-
sitions in the thermodynamic limit. The work establishes
solid connections between the self-organization of atoms in
photonic structures, which has been previously treated, and
quantum phase transitions. It also poses an interesting
question on the structure of the ground state in the limit of

the large number of qubits N. While we have demonstrated
the ZN symmetry for N qubits (see SM), the nature of the
phase transition and the structure of the ground state are yet
to be explored.
The results of the Letter can be applied to a more general

class of systems of moving atoms in the photonic structures
since they reveal that the apparatus developed in the studies
of the USC can be directly applied to explore both
fundamental aspects of quantized spin-motion coupling
and perspective applications in quantum information
processing.
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