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Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases
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We study dispersive optical nonlinearities of short pulses propagating in high number density, warm
atomic vapors where the laser resonantly excites atoms to Rydberg P states via a single-photon transition.
Three different regimes of the light-atom interaction, dominated by either Doppler broadening, Rydberg
atom interactions, or decay due to thermal collisions between ground state and Rydberg atoms, are found.
We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz,
can overcome the Doppler effect as well as collisional decay, leading to a sizable dispersive optical
nonlinearity on nanosecond timescales. In this regime, self-induced transparency (SIT) emerges when areas
of the nanosecond pulse are determined primarily by the Rydberg atom interaction, rather than the area
theorem of interaction-free SIT. We identify, both numerically and analytically, the condition to realize
Rydberg SIT. Our study contributes to efforts in achieving quantum information processing using glass cell

technologies.
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Introduction.—Strong and long-range interactions
between atoms excited in high-lying Rydberg states
[1-3] can be mapped onto weak light fields via electro-
magnetically induced transparency (EIT) [4-10], permit-
ting interaction-mediate optical nonlinearities [11-17] and
optical quantum information processing [18-27]. In the
EIT approach, ultracold temperatures (~uK) are of critical
importance to maintain the dispersive nonlinearity (typi-
cally submegahertz). As Doppler broadening (e /7 with T
the temperature) increases from about 100 kHz at 1 K to
gigahertz at 300 K, large thermal fluctuations at high
temperatures can easily smear out the nonlinearity
[28-31]. To overcome this limitation, recent experiments
employ short (nanoseconds) and strong (gigahertz Rabi
frequencies) lasers to excite high-density, room temperature
(or hot) Rydberg gases [29,30,32] confined in glass cells
[33-36]. Through a four-wave mixing process, strong
dispersive nonlinearities even exceed the laser strength
and thermal effect to realize a single-photon source in the
glass cell setting [32]. Though the rapid development in
experiments [29,30,32], a theoretical investigation of
Rydberg optical nonlinearities that take place on the
nanosecond timescale and in room temperature gases is
unavailable.

In this work we theoretically investigate dispersive
optical nonlinearities of nanosecond light pulses generated
in thermal gases of Rydberg atoms excited via a single-
photon transition. A crucial requirement to generate sig-
nificant Rydberg interactions at high temperatures is the
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high number density of the gas, where inelastic collisions
between ground state atoms and Rydberg electrons are
strong. We identify a dispersive nonlinear regime of
nanosecond pulses where the Rydberg interaction is in
the order of gigahertz and surpasses the thermal and
collisional effects. Importantly, this Rydberg nonlinearity
depends nonperturbatively on the transient dynamics of the
atoms. A key finding is that the pulse shapes into a bright
soliton, leading to Rydberg self-induced transparency
(SIT), in low and high temperature gases. Through numeri-
cal and mean-field (MF) calculations, we reveal explicitly
the dependence of Rydberg SIT on the Rydberg interaction.
This is fundamentally different from conventional (i.e., no
two-body interactions) SIT which is governed by the area
theorem barely due to light intensities [37]. Our study
opens opportunities to implement optical quantum infor-
mation processing with warm Rydberg gases. As the strong
quantum nonlinearity is realized with nanosecond pulses,
photon coincidences rates can increase from megabit to
gigabit. Such orders of magnitude increasing means
Rydberg SIT in room temperature gases could be a much
more robust and scalable platform for carrying out optical
quantum information processing.

Light-atom interaction.—We consider nanosecond laser
pulses (wave vector k along the z axis) propagating in a
high-density gas (density ), as depicted in Figs. 1(a) and
1(b). The laser resonantly couples ground state |1) to
Rydberg nP state |2) (with n the principal quantum
number) via a single-photon transition [see Fig. 1(c)].
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FIG. 1. Light-atom interactions in thermal gases. (a) Nano-
second laser pulses excite atoms from the ground state to Rydberg
states. (b) In a gas of warm atoms, the excitation is affected by
thermal motions, Rydberg atom interactions, and inelastic colli-
sions between ground state (black dots) and Rydberg (yellow
balls) atoms. The latter two depend on the density of the atoms.
(c) Level scheme. The laser (Rabi frequency ) resonantly
couples ground state |1) and Rydberg state [2). The latter
experiences strong, long-range van der Waals interactions
V,(rj;) and collisional decay (rate y5,). See text for details.
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Two Rydberg atoms (located at r; and ry) interact via the
van der Waals (vdW) interaction V,(ri) = —Ce/|r;|®
with rj =r;—r; and Cqoxn'' to be the dispersion
coefﬁcient. In this setting, Rydberg electrons frequently
collide with surrounding ground state atoms through the
polarization interaction. Using the Fermi pseudopotential
and neglecting higher partial waves [38], such interaction is
approximated to be V,(rj) ~ 27a,6(r ;) [39], where a; is
the s-wave scattering length of the electron-atom collision
[40]. This yields the N-atom Hamiltonian (% = 1),

Vi(ru) . . N
Z[ 2] éz ]2(2+V (]k)6é26]l(1’
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where H; = Q(r;)65,/2+He. is the jth atom
Hamiltonian with &, = [o/)(#/| (@, =1, 2). Here
Rabi frequency Q(r;) = d,,E(r;) depends on the slowly
varying electric field E(r) and dlpole moment d,; between
the Rydberg and ground state. To be concrete, Cs atoms
will be considered in this work as the respective dipole
moment is relatively large compared to other alkali atoms
[see Supplemental Material (SM) [41] for details]. Single-
photon Rydberg excitation of ultracold Cs atoms has been
demonstrated experimentally with nanosecond [42] and
continuous lasers [49-52].

In addition to vdW and dipole-dipole interactions
between Rydberg atoms, the attractive polarization inter-
action between electrons and ground state atoms has been
extensively studied previously [38,39]. In ultracold gases, it
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FIG. 2. Collisional cross section and decay rate in Rydberg
nP states. The cross section increases with higher n (a) and
temperature (b). Collisional decay rates monotonically increase
with n (c) and temperature (d). At room temperature, the rate
is a few gigahertz for high Rydberg states that is comparable
to the Doppler broadening (kvy). Here the atomic density is
N =5x 10" cm™3, and s-wave scattering length of Cs atoms
a, ~?21.7ap (ap the Bohr radius).

leads to the formation of ultralong-range Rydberg mole-
cules [53-56] and Rydberg polarons [57]. At high tempera-
tures, it causes a spectra shift and inelastic collision due to
mixing with other Rydberg states [39]. After compensating
the shift with laser detuning, the inelastic collision is
characterized by decay rate y5; = Nvro,p [39], where
vy = \/2kgT /M is the thermal velocity (M is the mass of
Cs atoms) and o,,p is the collisional cross section [41]. As
shown in Figs. 2(a) and 2(b), the cross section becomes
larger with increasing n and temperature 7. The decay rate
moreover depends on atomic densities linearly. In high-
density (> 10" cm™) gases, the decay, e.g., y5, ~ 1 GHz
at T =300 K, is comparable to the Doppler broadening
[Figs. 2(c) and 2(d)].

Taking into account the inelastic collision, dynamics
of the system is described by a set of coupled Maxwell-
Bloch equations [43]. In the following, we will focus
on propagation of short pulses along the z direction while
neglecting the diffraction as the medium is short. Applying
the continuous density approximation, this yields the one-
dimensional (1D) Maxwell-Bloch equations,

i%W(Z) + Q(2)p12(2) = Q" (2)p21(z) =0, (la)

|:l% + Y5, — kl):| P21 (Z) + ? W(Z) - i7§1f<v)R21 (Z)

—N1/3 / dZ'dv' f(v")V (7 = 2)praai (7, 2) = 0,
(1b)
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i<a% + ii) Q) +ax@R =0, (19

where  p,s(z) = (645(z)) is the mean value of
operator &,4(z ), and w(z) = 1-2p(z) is the population
inversion. Ry (z) = [dvpy(z) and y(z) =2N(d}y)?
Jdvf(v)pa(z)/ [sOQ( )] are the integrated density
and susceptibility [43], respectively. f(v) = 1/(\/mvr)
exp[—(v/v7)?] is the 1D Maxwell-Bolizmann velocity
distribution. These equations couple to two-body correla-
tion pyg (2. 2) = (aaﬂ( ")6,,(2)), whose equation is cum-
bersome and given in SM [41]. Note that spontaneous
decay due to finite Rydberg lifetimes (10-100 us) can be
neglected in the dynamics due to mismatch of the time-
scales [41].

Transmission of light pulses.—We first study optical
losses due to the collisional and Doppler effects. The
former leads to dissipation directly while the latter causes
population partially trapped in Rydberg states, hence
reducing the output intensity of the pulse after propagating
in the medium (length L). To be concrete, we assume the
pulse has a profile Q(z =0) = Qgsech|[(7 —1)/7], with
Q,, 1y, and 7 to be the amplitude, center, and duration at the
boundary z = 0. We emphasize that results in the following
sections can be equally obtained by considering Gaussian
pulses [41].

Using the spatial-temporal solution we evaluate trans-
mission 7 = [T® dr|Q(L)[*/ [1 d1|Q(0)|* at the output
z = L. For nanosecond pulses (z~ 1 ns), we find that
transmission 7 ~ 1, indicating that the medium is almost
transparent [Fig. 3(a)]. An important feature is that trans-
mission of nanosecond pulses is thermally robust. As
shown in Fig. 3(b), the reduction of # is marginal when
the temperature increases from 1 to 400 K, though both the
decay rate and Doppler broadening are a few gigahertz at
400 K [see Figs. 2(c) and 2(d)].

For long pulses, transmission becomes smaller at higher
temperatures [Fig. 3(b)]. When 7 > 10 ns, n depends on
the temperature nontrivially. For example, # decreases and
then increases with increasing temperature for z = 100 ns,
due to the interplay between the Doppler and collisional
effect. We can understand this dependence qualitatively by
examining static susceptibility 7(7) of infinitely long
pulses, which is given analytically in SM [41]. B
analyzing the imaginary part of 7 [Fig. 3(c)], we find that
the collisional decay (Doppler effect) plays a leading role at
low (high) temperatures. Moreover the real part of 7 is large
at lower temperatures [Fig. 3(d)]. This means that the pulse
can gain an optical phase during propagation.

Rydberg SIT of nanosecond pulses.—In the following,
we will focus on the high transmission situations, where so-
called self-induced transparency [37,59] can form. Without
atom- atom interactions SIT occurs if areas of the input
pulse 6(z f e = Q 7z are multiples of 2z, i.e.,
Q7 is an even number governed by the area theorem [59].
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FIG. 3. Transmission of the pulses. The pulse duration (a) and

temperature (b) of the medium affect the transmission. When
7~ 1 ns, n ~ 1 almost independent of the temperature. Notable
absorption is found when 7> 1 ns in (a). Transmission varies
with temperature nonmonotonically for very long pulses, e.g.,
7 =100 ns in (b). The imaginary 7; = Im[y(T)]/Im[},] (c) and
real part 7, = Re[7(T)]/Re[7,] (d) of static susceptlblllty 7(T) at
temperature 7T, scaled with respect to 7, = 7(T = 1K). The
maximal 7; and maximal absorption for z = 100 ns in (b) both
locate around 7" = 10 K. The absorption is suppressed at low and
high temperatures, due to less Rydberg excitations (hence, decay)
caused by the Rydberg blockade and Doppler effect [58],
respectively. The Rydberg interaction gives large real part j,,
especially at low temperatures. The legend in (c) and (d) is the
same. We consider Rydberg state |30P) with lifetime 27.79 us,
L =400 ym, and N =5 x 10" cm™3.

This nonlinear effect is rooted solely from high light
intensities, which reshape the pulse into a stable, bright
soliton, i.e., no absorption or distortion. The nonlinearity
reduces the group velocity [v, ~ 2¢|Q|*/(kNdf,)] but
does not affect optical phases [59].

Because of the strong Rydberg interaction for n = 30,
the pulse profile is distorted when the input area 0(0) = 2z
[Fig. 4(a)]. However, its shape is preserved if 6(0) = 0.35x
[Fig. 4(b)], giving rise to Rydberg SIT. Similar to SIT, the
formation of Rydberg SIT can be understood by analyzing
the atomic dynamics [37,59]. The dynamics is independent
of z since the nanosecond pulse translates in the medium.
Crucially important for Rydberg SIT is that coherence
Im(p,;) is symmetric with respect to #,, i.e., positive
(negative) when r<t, (t>1q) [Fig. 4(c)]. As pas, po1 = 0
when ¢ — +oo, the light is thus absorbed and then
emitted coherently. When T increases from 1 uK to 300 K
[Fig. 4(c)], modifications of the dynamics are marginal.
Such transient dynamics guarantees the formation of
Rydberg SIT at the optimal area 9(0) = 0.357.

We  define fidelity = | [T diQ(L)Q(0)*/
JFRdt|Q(L)* [T di|Q(0)]* to quantlfy the deformation
of the pulses. F' =1 if the input and output pulse are
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FIG. 4. Rydberg SIT and the optimal area. The pulse is distorted
when 0(0) = 2z (a) and stable when 0(0) = 0.357z (b), corre-
sponding to Rydberg SIT. (c) The transient dynamics of atoms at
T =1 pK (upper panel) and 300 K (lower panel). Im(p,;) is
symmetric with respect to fy. The time average of Im(p,;) is
negligibly small at 300 K, which is important to the formation of
Rydberg SIT. (d) Fidelity F as a function of initial area 6(0).
Maximal fidelities appear at Rydberg-state-dependent optimal
areas. (e) Optimal area (filled circle) and corresponding fidelity at
1 uK (star) and 300 K (empty circle). The MF (dashed line) and
numerical calculation agree well. (f) Three regimes of nanosec-
ond pulses, dominated by either the Doppler broadening (DB),
Rydberg interactions, or optical absorption (OA). Rydberg SIT
forms in the Rydberg interaction dominant region. The color bar
shows the ratio of the sum of the Rydberg interaction and Doppler
broadening over the collisional decay rate. In panels (a)—(c) and
(f), n =30. In panels (d) and (e), the pulse area is varied by
changing €. Other parameters are fy, =5mns, 7=1ns,
L =400 ym, and T = 300 K.

identical. When 0 < 6(0) < 27, F indeed displays a single
maximal at 6(0) = 0.35z (see SM [41] for more details).
As shown in Fig. 4(d), the optimal area varies when
changing n. To systematically understand the dependence
of the optimal area on n, we carry out large scale
calculations for 20 < n < 50. It is found that the optimal
area decreases monotonically with increasing n, while the
corresponding fidelity is high [Fig. 4(e)]. Note that
Rydberg SIT can also be achieved with Gaussian pulses,
which lead to similar optimal areas and fidelities as shown
in SM [41].

State-dependent optimal areas.—Inspired by the tran-
sient dynamics of Rydberg SIT [Fig. 4(d)], we will develop
a mean-field theory for the Bloch equation to understand
the optimal area. To deal with the two-body interaction

term in Eq. (1b), we apply a local field approximation to the
two-body correlations, i.e., p221(Z,2) & p2r(2)p21(2) [8]
as the pulse is much longer than ranges of the Rydberg
interaction. With this approximation Eq. (1b) becomes

iQw

WN—J’&[M—f(U)Rzl]—i(kU+”P22)P21—77 (2)

while other equations are not affected formally. Here u =
2N3 [ dzV(z) is an effective Rydberg interaction. To
avoid divergence in the integral, the vdW potential is
modified at short distances to have a soft-core shape,
V(z) = Cg/(z° + 25,), when atomic distances are smaller
than the blockade radius z,, = (|Cs|/Q,)"/® [2]. This
allows us to analytically evaluate the effective interaction
u=4rN 1/3C1/ 6!25/ 6/3 which depends on the density,
Rabi frequency, and Rydberg state.

Depending on the ratio (kvr + u)/y5,, three different
regimes of the coherence are obtained approximately
according to Eq. (2). Fixing 7, a Doppler broadening
dominant region appears at low densities when
kvy > u > y5,, as shown in Fig. 4(f). For sufficiently high
densities [dotted line in Fig. 4(f) with 10kv; = u] Rydberg
interactions overtake the other two effects, 1i.e.,
u > kvy > y5,. This is the most interesting region where
Rydberg SIT can form. Further increasing densities (dashed
line, kvy + u = 100y5),), the collisional decay starts to kick
in and causes losses. The overall decay will also depend on
the propagation distance.

In the following, we will find the optimal areas analyti-
cally in the Rydberg interaction dominant region (by
neglecting terms involving kv and y5,). As the nonlinear
Eq. (2) is difficult to integrate even with this approximation,
we will apply the following ansatz solution p,, = A[l —
cos ' Qudr'] and p, = —(iB/2)cos [* Qydl + Cpy,
where A, B, and C are trial parameters, and
Qy = V2mexp (=£2/27%)/z. Such ansatz ensures the sym-
metry of the transient dynamics, i.e., Im[p,] is symmetric
with respect to the pulse center, and p;, = py, = 0 when
t - o0. We then approximate the pulse Q in the MF
equation with a Gaussian Q = fexp (—12/272)/\/ 2xz,
where 0 is the optimal area to be determined.

Substituting the ansatz to the MF equation, the trial
parameters and area 0 can be calculated analytically (see
SM [41]). Explicitly, the Rydberg-state-dependent area is
given by

~ 2
9:—ﬂ(\/2ﬂu272+ﬂ2—ﬂ)1/2, (3)

ut

which is the key result of the MF calculation. Equation (3)
shows  — 27 when u — 0, recovering the area theorem in
noninteracting SIT [59]. Increasing u, 0 decreases gradu-
ally. When compared with numerical data, an excellent
agreement is found if n < 40. Small deviations for n > 40
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come from the two-body correlation and collisional decay,
which become important gradually with increasing n.

Conclusion and discussion.—In this work, we have
studied propagation dynamics of nanosecond pulses in
thermal, high-density Rydberg gases. We have shown that
strong dispersive optical nonlinearities can be achieved
from low to high temperatures. Rydberg SIT can form in
thermal atomic gases which is largely immune to the
Doppler broadening and collisional decay. A key finding
is that the optimal area of Rydberg SIT is reduced by the
Rydberg atom interaction. The optimal area and its
dependence on the interaction are determined both numeri-
cally and analytically.

This work opens exciting opportunities to study non-
linear optics and to implement quantum information
processing at nanosecond timescales with warm Rydberg
gases. Beyond the present level scheme, one can also
achieve strong Rydberg nonlinearities of nanosecond laser
pulses via multiphoton excitations (e.g., electromagneti-
cally induced transparency). Benefited from tunable light-
atom couplings and spatial excitation selectivity [60], this
allows us to study, for example, simultons [61], in strongly
interacting Rydberg gases. The strong Rydberg nonlinear-
ity permits us to realize quantum information applications,
such as fast optical phase gates [62-65], with Rydberg SIT
(see SM [41] for a demonstration).
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