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We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a
one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the
dynamics of the dark-state polaritons under realistic assumptions. Within this model, we analyze the
driven-dissipative transport of polaritons through the system by considering a coherent drive on one side
and by including the spontaneous emission of the metastable Rydberg state. Using a variational approach to
solve the many-body problem, we find strong antibunching of the outgoing photons despite the losses from
the Rydberg state decay.
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The interplay between external driving and dissipation
in strongly interacting quantum many-body systems leads
to the emergence of rich nonequilibrium dynamics not
found in closed quantum systems [1,2], yet their theoretical
analysis is extremely difficult [3]. This is especially true in
Rydberg polariton systems [4–16], where the metastable
character of the Rydberg excitation provides a natural
dissipative element. Here, we show that a variational
analysis can successfully describe this challenging many-
body problem.
Strongly interacting Rydberg polaritons are closely

linked to the appearance of electromagnetically induced
transparency (EIT) involving a highly excited Rydberg
state [17,18]. Early experiments have observed a decline of
the EIT feature due to strong Rydberg interactions [19,20].
More recent experiments have demonstrated the appear-
ance of a strongly interacting polariton quasiparticle
consisting of both light and atomic matter, in a many-body
setting [6–8] as well as on the single polariton level [9–11],
with immediate applications in the generation of strongly
correlated photon states [21] and photonic quantum com-
puting [12,22]. The theoretical analysis of these systems
has so far been limited to an exact treatment of up to two
interacting Rydberg polaritons [13], or to large quantum
many-body simulations in the absence of the decay of the
Rydberg state [14–16].
In this Letter, we investigate the driven-dissipative

quantum many-body dynamics of Rydberg polaritons in
an optical lattice potential. We derive the dispersion
relations for the single particle problem, from which we
obtain an effective Bose-Hubbard model for the dark-state
polaritons with long-range hopping and long-range
interactions arising from the van der Waals interaction of
the Rydberg states. We show that under experimentally
realistic conditions, the dynamics is confined to a single
dark-state polariton band, even in the presence of dissipa-
tion from the decay of the Rydberg state and conversion of

dark-state polaritons into bright polartions by the van der
Waals interaction. We analyze the driven-dissipative many-
body model using a variational approach, which we bench-
mark against wave-function Monte Carlo simulations for
small system sizes. Finally, we show that strongly corre-
lated photons can be observed when the polaritons are
leaving the system.
We consider multiple ensembles of rubidium atoms in

an effective one-dimensional (1D) geometry with length
L ¼ Na with a being the spacing between the N lattice
sites created by an appropriate optical lattice potential [23].
The atomic density nðzÞ on each site is approximated
by a Gaussian distribution with an average density of
n0 ¼ 1013 cm−3 and a standard deviation of σ ¼ 25 nm.
Figure 1 shows a depiction of nðzÞ and the level structure of
the trapped atoms. Two counterpropagating light fields Eþ ,
E− with the same polarization couple the ground state jgi to
a single excited state jei with a transition frequency of ωge
and are described by the bosonic operators Ψ̂Eþ and Ψ̂E−

.

FIG. 1. Setup of the system for dark-state polariton propaga-
tion. A one-dimensional optical lattice potential creates lattice
sites separated by a distance a, around which the atoms exhibit
approximately Gaussian density profile. The system is being
pumped from the left by a coherent light field, leading to an
output intensity Iout. Each atom is driven by a photon field with a
space-dependent coupling g and a coherent laser field Ω with a
two-photon detuning δ. The photon field is detuned by Δe from
the intermediate state.
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The propagation in opposite directions allows for a descrip-
tion in terms of localized Wannier functions [24]. The light
fields can be detuned by δe from the atomic transition which
we combine with the linewidth γe of jei to a complex
detuning Δ ¼ δe − iγe. A second (control) field with Rabi
frequencyΩ enables the transition to a Rydberg state jri and
is set to satisfy a two-photon resonance (δ ¼ 0) which brings
our system into the EIT regime. The collective, single-
photon Rabi frequency gðzÞ in this regime is then given by

gðzÞ ¼ g̃
ffiffiffiffiffiffiffiffiffi
nðzÞ

p X
l

eik̃la; ð1Þ

with g̃ ¼ ½6πγec3=ω2
ge�1=2 and c being the speed of light

[16]. We split the phase factor up in two parts by setting
k̃ ¼ k0 þ k0 which corresponds to the wave vector
k0 ¼ ωge=c and a deviation from the EIT condition k0.
The transition processes within the atoms can then be
described by the bosonic field operators Ψ̂e ¼ jgihej and
Ψ̂r ¼ jgihrj [15]. In the continuum, the noninteracting part
of the Hamiltonian can then be written as

H0 ¼ ℏ
Z

dzΨ̂†

0
BBB@

−ic∂z 0 gðzÞ 0

0 ic∂z gðzÞ 0

gðzÞ gðzÞ Δ Ω
0 0 Ω δ

1
CCCAΨ̂; ð2Þ

with Ψ̂ ¼ fΨ̂Eþ ; Ψ̂E−
; Ψ̂e; Ψ̂rg. The kinetic terms for the

quantized light fields only account for the previously
mentioned deviation from the two-photon resonance.
We obtain the single polariton solution of Eq. (2) by

using a Bloch wave ansatz ϕkðzÞ ¼ eikzukðzÞ in combina-
tion with a plane wave expansion for the periodic functions
ukðzÞ. The eigenstates of the resulting band structure are a
composition of the previously defined bosonic fields and
can be interpreted as polaritons [25]. Most eigenstates will
dissipate quickly because of the spontaneous emission rate
that arises from any contribution of jei. Hence, we want to
focus on the dark-state polaritons with their vanishing
population hΨ̂†

eΨ̂ei.
The lower part of Fig. 2 shows their dispersion relations

for a typical excitation scheme 5s → 5p → 34s1=2 in 87Rb.
The coupling of the forward and backward propagating light
field to the same intermediate level leads to a symmetric
behavior of the bands and results in a linear dispersion. The
solution at k ¼ 0 presents a superposition of both bands,
which results in a cancellation of the Rydberg part in the
polaritons and a crossing of the bands at that point [26]. The
surrounding bands like the one shown in the upper part of
Fig. 2 are separated by a large band gap compared to the
energy scales of the dark states so that we can focus our
attention on the bands close to zero energy.
In the following, we transform the eigenstates of

Eq. (2) into localized Wannier functions wjðzÞ ¼
ð1= ffiffiffiffi

N
p ÞPk e

−ikajϕkðzÞ, resulting in bosonic creation

operators a†i ¼
R
dzwðzÞΨðzÞ for the upper band and the

analogous operators bi for the lower band. Additionally,
we consider pumping on the first lattice site with strength
p, describing the driving with a coherent light field from
the left. In the Wannier basis, the Hamiltonian has the form

H0 ¼ −
X
i;j

Ji;jðâ†i âj − b̂†i b̂j þ H:c:Þ

þ ð2ϵ − βÞ
X
i

b̂†i b̂i þ β
X
i

â†i âi

þ pðâ†1 þ â1 þ b̂†1 þ b̂1Þ: ð3Þ

The first line in Eq. (3) describes hopping between the sites
with a strength of Ji;j, which can be written in terms of the
hopping length m as Jm with ji − jj ¼ ma. The strength of
Jm can be tuned by the control and probe laser, i.e., the Rabi
frequency Ω and the coupling strength gðzÞ. It is important
to note that the scaling of Ji;j with the distance ji − jj does
not follow an exponential decay but a power law asymp-
totically decaying like ji − jj−2, which arises from the
linear dispersion of the bands at around k ≈ 0. Hence, we
cannot approximate the system by a nearest-neighbor
hopping J1, which is possible when considering different
level schemes [27].
The term β takes the role of a chemical potential and can

be tuned by the frequency of the pump laser. We choose
β ¼ 0.45γ so that J1=ð2ϵ − βÞ ≪ 1, which leads to a strong
detuning of the lower band and allows us to neglect it in the
following.
Let us now consider the consequences of the van der

Waals interaction VðzÞ ¼ C6=z6 between atoms in the
Rydberg state on our system to see if the assumptions we

FIG. 2. Dispersion relation for polaritons close to zero energy
for Ω=2π ¼ 18 MHz, δe=2π ¼ 20 MHz, γe=2π ¼ 6 MHz, and
a ¼ 532 nm. We obtain two dark-state polariton bands and
exemplarily show a bright state polariton band. The dashed gray
line indicates the average energy ϵ of the upper dark-state
polariton. The inset shows the scaling of the band gap with Ω.
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made so far still hold true. The repulsive nature of the
interaction leads to a blockade radius inside the lattice
which is defined through the strength of the hopping J1
between different sites and the van der Waals coefficient
C6 for the chosen Rydberg state r̃b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC6=J1Þ6
p

, similar
to the conventional Rydberg blockade for stationary atoms
[28]. An important consequence of the van der Waals
force is the two-photon detuning for atoms in the vicinity
of an already excited atom which exceeds the EIT
linewidth of the system at a characteristic distance
rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC6jΔj=Ω2Þ6

p
. Below that distance the EIT window

brakes and photons can get absorbed into the intermediate
state of the atoms. This causes a scattering of the photons
and restricts the creation of a new polariton only to sites
outside rb and it also allows us to restrict the pumping
term in Eq. (3) to the first site of the lattice [29]. For the
chosen parameters, we find r̃b ≈ 5a and rb ≈ 2a; i.e., the
Rydberg blockade screens the breakdown of the EIT
resonance. In this regime, the only consequence of rb
is a regularization of the van der Waals interaction
potential, which results in a two-body interaction Vij
according to

Vij ¼
C6

2

Z
dzdz0

w�
i ðzÞw�

jðz0Þwjðz0ÞwiðzÞ
r6b þ jz − z0j6 : ð4Þ

Furthermore, rb > a prevents the formation of more than
one dark-state polariton per site. We implement this
restriction by choosing Pauli operators σ−ðþÞ for the
annihilation (creation) operators að†Þ in Eq. (3). In this
picture, the spin 1=2 states j↑ii and j↓ii correspond to the
existence or absence of a dark-state polariton at site i,
respectively. At distances larger than r̃b, the interaction
energy is small compared to the band gap between the
dark-state polaritons and the other bands so that the
single-band approximation still holds true. Putting
everything together gives us an extended Bose-
Hubbard Hamiltonian for interacting dark-state polar-
itons:

H ¼ −
X
i;j

Ji;jσ
þ
i σ

−
j þ pðσþ1 þ σ−1 Þ

þ β
X
i

σþi σ
−
i þ

X
i;j

Vijσ
þ
i σ

þ
j σ

−
i σ

−
j : ð5Þ

So far we have neglected the second natural dissipation
channel in our system in the form of the spontaneous decay
from the Rydberg state. To describe the dynamics of the
open quantum system under the condition of Markovianity,
we can use the Lindblad form of the differential equation
ðd=dtÞρ ¼ Lρwith the LiouvillianL being the generator of
the dynamics [30], i.e.,

LðρÞ ¼ −i½HðtÞ; ρðtÞ� þ
X
j

�
cjρc

†
j −

1

2
fc†jcj; ρg

�
: ð6Þ

The spontaneous emission from the Rydberg state also
affects the polaritons and is described by the jump operators
ci ¼ ffiffiffi

γ
p

σðiÞ− for each site i and an effective decay rate of

γ ¼ R
dzjwðiÞ

r ðzÞj2γr ¼ 12.5 kHz, with γr being the decay
rate of the Rydberg state [31]. Here we have neglected the
decay from the intermediate state, as this process is orders of
magnitude slower for dark-state polaritons. Additionally, to
account for photons leaving the system along the propaga-
tion axis, we add another dissipation channel with jump
operators c1ð;NÞ ¼ ffiffiffiffiffiffiffi

γout
p

σ1ð;NÞ
− that only applies on the first

and last site of the lattice. Here, we consider the case where
γout ¼ J1; i.e., the coupling to the outside has the same
strength as the internal nearest-neighbor hopping. This also
allows us to compute the output photon intensity in terms of
the internal dynamics of the polaritons in the system,
providing a similar approach as the input-output formalism
in, for example, cavity QED systems [32,33]. We define the
(normalized) output intensity as Iout ¼ J1hσþNσ−Ni. Similar
processes can also be defined for the other sites but show an
insignificant influence on the overall dynamics.
We perform exact numerical simulations of the system

for site numbers up to N ¼ 10 via the wave-function
Monte Carlo method using the QuTiP library [34], which
amounts to an average of about two polaritons inside the
system. In all our simulations, we choose the initial state to
have no polaritons in the system. However, this approach is
limited to studying system sizes of at most N ¼ 20 due
to the exponential growth of the Hilbert space [35]. To
analyze the output for larger lattices, we use a variational
approach [36,37] starting with a product ansatz for the
density matrix,

ρ ¼
YN
i¼1

ρi ¼
1

2

YN
i¼1

�
1þ

X
μ∈fx;y;zg

αμσ
i
μ

�
; ð7Þ

with ρi as the density matrix for each lattice site and αμ as
our variational parameters. This product state is then
restricted to a blockade constraint for the polaritons, such
that there is only one polariton inside a blockade radius rb,
i.e.,

P
i−rb<j<iþrbhσ

ðjÞ
þ σðjÞ− i ≤ 1 for all sites i. This approach

is equivalent to the hard sphere correlation function used in
the analysis of coherently driven Rydberg gases [38].
For the variational integration of the quantum master

equation, we use an implicit midpoint method [37]. To
reduce the number of variational parameters in a single
optimization, we evolve the system from t to tþ Δt by
minimizing the parameters for one site and hold every other
site constant [39]. This procedure is repeated for all sites
before moving on to the next time step. For the variational
optimization we use the norm Di for each site i given by
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Di ¼
X
j≠i

���� −
τ

2
L½ρiðtþ τÞρjðtÞ þ ρijðtÞ�

þ ρiðtþ τÞρjðtÞ − ρijðtÞ
����
1

→ min; ð8Þ

where k · k1 denotes the trace norm given by Trfj · jg.
Additionally, we add constraints to the minimization to
enforce the positivity of the density matrix ρi ≥ 0 and to
enforce the blockade of the polaritons.
Figure 3 shows the intensity output Iout for different

lattices sizes N. Additionally, we benchmark the variational
results against wave-function Monte Carlo simulations. We
find that the two are in good agreement for N ¼ 10, with
the remaining difference being caused by short-range
correlation between the ends. This effect is much stronger

for N ¼ 4 and diminishes for larger system sizes. Having
demonstrated the viability of the variational approach, we
now turn to the variational simulation of larger system
sizes. Figure 4 displays the dynamics of the polariton
population on each site for a lattice size of N ¼ 40. We
observe that a significant portion of the polariton density
remains confined to the initial pump site, with the rest of the
population spreading throughout the system similar to a
light cone, which is a consequence of the linear dispersion
relation. Furthermore, we find that the Rydberg blockade
has a significant effect on the output signal. Above p ≈ 10γ
we do not see any further increase in the output as the
polariton population leads a saturation of the hard sphere
constraint.
Finally, we also want to look at the temporal correlations

in the output intensity. For this, we let the system evolve
until it reaches a steady state at time tss. At this time, we
consider the effect of a quantum jump corresponding to a
photon leaving the system, after which we let the system
evolve for an additional time τ. Then, the probability to
observe a second photon is described by the two-time
correlation function,

gð2ÞðτÞ ¼ hσþNðtssÞσþNðtss þ τÞσ−Nðtss þ τÞσ−NðtssÞi
hσþNσ−Ni2tss

¼ 1

hσþNσ−Ni2ss
Trfσ−NeLτ½σ−NρðtssÞσþN �σþNg; ð9Þ

where we have used the cyclicity of the trace and the
operators σþð−Þ

N are only acting on the last site N of the
lattice [40]. The van der Waals interaction ensures that all
sites inside the blockade radius of the last site are in an
unexcited state at the time of the first measurement. We use
a self-consistent approach to identify this distance by
adding the excitation probabilities of the other sites
beginning from site N − 1 until

P
i¼N−1hσþi σ−i i ¼ 1 and

set them back to the ground state. The blockaded region
which is defined in that way is for smaller system size
identical to our previous definition of the blockade radius.
For larger system sizes, the radius is extended because it
takes the consequences of the decay from the Rydberg state
into account.
Figure 5 shows an extended antibunched region

[gð2ÞðτÞ ≈ 0]. Its duration depends on the self-consistent
blockade radius as well as the hopping strengths Jm. We
also observe bunching that increases with the system size
before the system recovers to its steady state gð2ÞðτÞ ¼ 1.
These findings underline the possibility of using Rydberg
polariton systems to generate strongly correlated photon
streams, similar to what has been discussed for free-space
systems [29].
In summary, we have demonstrated the possibility to

treat large many-body systems of driven-dissipative sys-
tems of strongly interacting Rydberg polaritons using a
variational approach. Deriving an extended Bose-Hubbard

FIG. 3. Intensity output hIouti for different system sizes for a
pump strength of p ¼ 10γ. For smaller system size (N ¼ 4, 10)
the variational approach (solid lines) is compared to wave-
function Monte Carlo (WFMC) simulations (dashed lines).
The shaded region shows the statistical error of the WFMC
simulations for 500 trajectories.

FIG. 4. Time evolution of the polariton population PðiÞ
dp ¼

hσðiÞþ σðiÞ− i of each site i in a lattice of size N ¼ 40 for a pumping
strength of p ¼ 10γ.
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model with long-range hopping and interactions, we
observe that the propagation of photons through a lattice
can yield strong correlations between the particles. The
variational approach proved to be a good approximation for
the dynamics especially for larger system sizes. Our work
presents a first look into the driven-dissipative transport of
Rydberg polaritons and paves the way for future inves-
tigations of different driving scenarios and extensions to
free-space polaritons in the form of a suitable con-
tinuum limit.
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