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We construct a conformal lattice theory with only gauge degrees of freedom based on the induced
nonlocal gauge action in QED3 coupled to large number of flavors N of massless two-component Dirac
fermions. This lattice system displays signatures of criticality in gauge observables, without any fine-tuning
of couplings and can be studied without Monte Carlo critical slowdown. By coupling exactly massless
fermion sources to the lattice gauge model, we demonstrate that nontrivial anomalous dimensions are
induced in fermion bilinears depending on the dimensionless electric charge of the fermion. We present a
proof-of-principle lattice computation of the Wilson-coefficients of various fermion bilinear three-point
functions. Finally, by mapping the charge q of fermion in the model to a flavor N in massless QED3, we
point to a universality in low-lying Dirac spectrum and an evidence of self-duality of N ¼ 2 QED3.
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Introduction.—Extraction of conformal field theory
(CFT) data plays an important role in our understanding
of critical phenomena. An important set of conformal data
are the scaling dimensions of operators that classify the
relevant and irrelevant operators in a CFT. These data can
be used to abstract the source of dynamical scale breaking
in the long-distance limit of quantum field theories in terms
of few symmetry-breaking operators that turn relevant. The
operator product expansion (OPE) coefficients in the CFT
correlation functions are another set of highly constrained
conformal data. The formal structure of CFT and its data
have been explored over decades and one can refer to [1]
for a survey of the subject, [2] for a discussion not restricted
to two dimensions, and [3–5] for recent developments in
dimensions greater than two. Monte Carlo (MC) studies of
strongly interacting CFTs are difficult owing to a combined
effect of the required precise tuning of couplings, an
increase in MC autocorrelation time closer to a critical
point and the need for large system sizes. Notwithstanding
such difficulties, the CFT data in many bosonic spin
systems have been extracted from traditional MC [e.g.,
[6,7] for recent determinations in 3D OðNÞ models] as well
as using radial lattice quantization [8–10]. At present,
however, three-dimensional fermionic CFTs have been
of great interest, particularly owing to recent works related
to dualities [11–13], and therefore, MC based search for

three-dimensional fermionic CFTs (such as [14–19]) is of
paramount importance.
One such three-dimensional interacting fermionic CFT is

approached in the infrared limit of the parity-invariant
noncompact quantum electrodynamics (QED3) with N
(even) flavors of massless two-component Dirac fermions
in the limit of large N; to leading order, the effect of
fermion is to convert the p−2 Maxwell photon propagator
into a conformal 16ðNg2pÞ−1 photon propagator [20] in the
limit of small momentum p, where g2 is the dimensionful
Maxwell coupling. This suggests replacing the usual
Maxwell action for the gauge field Aμ by a conformal
gauge action [21]

Sg ¼
1

q2

Z
d3p
ð2πÞ3 AμðpÞ

�
p2δμν − pμpν

p

�
Aνð−pÞ; ð1Þ

with a dimensionless coupling q2ðNÞ ¼ 32=N for large N,
thereby obtaining results consistent with an interacting
conformal field theory in a 1=N expansion. The conformal
nature of the above quadratic action can be seen in the
tensorial structure of n-point functions of field strength Fμν

that is consistent with conformal symmetry [21,22]. Since
the dimension of Fμν is fixed by gauge invariance, it is only
for the 1=p kernel of the above quadratic action, the
coupling becomes dimensionless in three dimensions.
Both approaches in [20,21] are consistent with a scale-
invariant field theory only if N is above some critical value,
but recent numerical analyses [23,24] of QED3 have shown
that the theory likely remains scale (or conformal) invariant
all the way down to the minimumN ¼ 2. This suggests that
the induced gauge action from the fermion is conformal for
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any nonzero N, and it might be possible to capture many
aspects of the infrared physics of QED3 by appropriately
modeling this induced nonlocal action—we do so by using
the quadratic conformal gauge action Eq. (1), however,
with an otherwise unknown q-N relation, q2ðNÞ, which for
general N needs to be determined from first principles, and
assuming that effect of terms in the induced-action which
are higher order in gauge field are negligible. This
motivated us to consider the action in Eq. (1) in its own
right as an interacting CFT for any q2 obtained without
tuning any couplings, and probed by massless spectator
fermions. It is the primary aim of this Letter to use a lattice
regularization of Eq. (1) and show that this CFT induces
nontrivial conformal data in fermionic observables depend-
ing on the value of q, thereby making it a powerful model
system for lattice studies of fermion CFTs. Finally, we will
close the loop and demonstrate numerically that this
conformal gauge theory for arbitrary q2 probed by spectator
fermions can describe universal features in a corresponding
N-flavor QED3.
The model and signatures of its criticality in pure-gauge

observables.—The noncompact U(1) lattice gauge model
we consider is the regularized version of Eq. (1) on L3

periodic lattice, given by

Z ¼
�Y

x;μ

Z
∞

−∞
dθμðxÞ

�
e−SgðθÞ; with

Sg ¼
1

2

X3
μ;ν¼1

X
x;y

FμνðxÞ□−1=2ðx; yÞFμνðyÞ; ð2Þ

where θμðxÞ are real-valued gauge fields that reside on the
links connecting site x to xþ μ̂, with a field strength
Fμν ¼ ΔμθνðxÞ − ΔνθμðxÞ, where Δμ is the discrete for-
ward derivative. The three-dimensional discrete Laplacian
is □ ¼ P

μ ΔμΔ†
μ. The model lacks any tunable dimen-

sionful parameter at the cost of being nonlocal, which is not
a hindrance for a numerical study; a MC sampling of the
gauge fields weighted by Eq. (2) becomes simple in the
Fourier basis where the Laplacian is diagonalized and the
modes are decoupled. We absorbed the fundamental real-
valued charge q in Eq. (1) in a redefinition of gauge fields
when defining the parameterless lattice model, and hence
the observables will couple to gauge fields as qθμðxÞ, or
integer multiples thereof. We discuss further details of the
model and the algorithm in the Supplemental Material [25].
The absence of tunable parameters in the lattice action by

itself is not an indication of it being critical. Strong
evidence of the scale-invariant behavior was seen in the
sole dependence on aspect ratio ζ ¼ l=t of all l × t Wilson
loops, WðqθÞ, after a simple perimeter term is removed.
The asymptotic behavior [33] is characterized by νζ
as ζ → ∞ and ν=ζ for ζ → 0 with the coefficient
ν ¼ −0.0820ð8Þq2 that should be universal for all theories
approaching this CFT, such as QED3 (see Supplemental

Material [25]). Another interesting pure-gauge observable
is the topological current, V top

μ ≡ ðq=4πÞPνρ ϵμνρFνρ,
which is trivially conserved in this noncompact U(1)
theory. We also checked that its two-point function for 1 ≪
jxj ≪ L=2 behaves like a conserved vector correlatorP

μ hV top
μ ð0ÞV top

μ ðxÞi ¼ Ctop
V jxj−4, with the coefficient

Ctop
V ¼ ðq2=4π4Þ as expected from the continuum regulated

calculation [34–36]. The trivial q2 dependence of con-
formal data in pure-gauge observables becomes nontrivial
in gauge-invariant observables formed out of spectator
massless fermions.
Conformal data in fermionic observables.—The lattice

model per se does not have dynamical fermions. But, one
can couple spectator massless fermion sources to the model
in order to construct a variety of gauge-invariant hadronic
correlation functions. Formally, the source term for a pair of
parity-conjugate Dirac fermions is ψ̄þ

q Gqψ
þ
q − ψ̄−

qGqψ
−
q ,

where Gq is the exactly massless overlap lattice fermion
propagator [24,37,38] coupled to the gauge fields through
the gauge links eiqθμðxÞ (see Supplemental Material [25] for
the implementation of overlap Dirac operator, which
includes Refs. [39,40]). The flavor-triplet fermion bilinears
are defined by taking appropriate derivatives

O�ðx; qÞ ¼
� ∂
∂ψ̄�

q
Γ

∂
∂ψ∓

q

�
ðxÞ;

O0ðx; qÞ ¼ 1ffiffiffi
2

p
� ∂
∂ψ̄þ

q
Γ

∂
∂ψþ

q
þ ∂
∂ψ̄−

q
Γ

∂
∂ψ−

q

�
ðxÞ; ð3Þ

of the effective action; Γ ¼ 1 for scalar bilinear S�;0, and
Pauli matrices Γ ¼ σμ for the conserved vector bilinears
V�;0
μ . Practically, this procedure is equivalent to a pre-

scription of replacing fermion lines with massless
fermion propagators to form gauge-invariant observables.
We also imposed antiperiodic boundary conditions on
fermion sources in all three directions which is symmetric
under both lattice rotation and charge conjugation while
removing the issue of trivial Dirac zero modes present even
in the free-field q ¼ 0 limit. We will denote the n-point
functions formed out of these fermion bilinears by
GðnÞðxij; qÞ and the dependence on the xij, the separation
between the location of the ith and jth bilinears
should match the structure deduced from conformal
symmetry. Since we are only interested in changes to
observables from free-field theory, we form the ratios
G̃ðnÞðxij; qÞ ¼ GðnÞðxij; qÞ=GðnÞðxij; 0Þ, which we hence-
forth refer to as reduced n-point functions; this also helps
decrease any finite-size and short-distance lattice effects
that are already present in the free-field case.
We define scaling dimensions Δi ¼ 2 − γi governing the

scaling G̃ð2Þ
OiOi

ðx12Þ ¼ Cijx12j2γi for distances larger than
few lattice spacings. The scaling dimension ΔSðqÞ ¼
2 − γSðqÞ of S�;0 is an example of nontrivial conformal
data that is induced in this model. The q-dependent
nonzero γS can be obtained from the finite-size scaling
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(FSS) of the scalar two-point function, G̃ð2Þ
SþS−ðjxj ¼ ρLÞ ¼

L2γS ½gðρÞ þOð1=LÞ� at fixed ρ. The data for log½G̃ð2Þ
SþS− � at

ρ ¼ 1=4 are shown as a function of logðLÞ using values of
q ranging from q ¼ 0.5 to 2.5 in the right panel of Fig. 1,
and one sees that the slope of logðLÞ dependence (which is
2γS) increases monotonically from 0 when q is increased.
Better estimates of γSðqÞ were obtained by studying
the FSS of the low-lying discrete overlap-Dirac eigen-
values ΛjðL; qÞ, satisfying G−2

q vj ¼ −Λ2
jvj; the FSS,

ΛjðL; qÞ ∝ L−1−γSðqÞ, is a consequence of the FSS of the
scalar susceptibility. In the left panel of Fig. 1, we show the
reduced eigenvalues, Λ̃jðL; qÞ≡ ΛjðL; qÞ=ΛjðL; 0Þ for
j ¼ 1 as a function of L along with curves from combined
fits using a functional form Λ̃jðL; qÞ ¼ ajL−γSð1þP

4
k bjkL

−kÞ to first five Λ̃j using data from L ¼ 6
up to L ¼ 36 (see Supplemental Material [25]). Such a
functional form with leading scaling behavior and sub-
leading scaling corrections nicely describes the data and
leads to precise estimates of γSðqÞ that increase continu-
ously from γS ¼ 0 to Oð1Þ in the vicinity of q ≈ 2;
this dependence is captured to a good accuracy by
γSðqÞ ¼ 0.076ð11Þq2 þ 0.0117ð15Þq4 þOðq6Þ, over this
entire range of q. For some charge q ¼ qc ≈ 2.9, the value
of γS becomes greater than 1.5, which is the unitarity bound
on scalars in a three-dimensional CFTs (cf. [4]); therefore,
within the framework of constructing fermionic observ-
ables in this pure-gauge theory, we need to restrict
ourselves to values of q < qc to be consistent with being
an observable in a CFT. Unlike the scalar bilinear, Va

μ is
conserved current and hence, does not acquire an anoma-
lous dimension. Therefore, the only nontrivial conformal
data are the two-point function amplitude, CVðqÞ ¼P

3
μ¼1 G̃

ð2Þ
Va
μVa

μ
ðjxj; qÞ that we were able to obtain from the

plateau in the reduced vector two-point correlator as a

function of separations, 0 ≪ jxj ≪ L=2 (see Supplemental
Material [25]). Its q dependence can be parametrized
as 4π2CVðqÞ ¼ 1 − 0.0478ð7Þq2 þ 0.0011ð2Þq4 þOðq6Þ.
In order to demonstrate further the efficacy of the model

as a CFT with nontrivial conformal data in the massless
spectator fermion observables that is tractable numerically
on the lattice, we also present a proof-of-principle compu-
tation of the OPE coefficients C̃ijkðqÞ of the reduced three-
point functions G̃ð3Þ

O1O2O3
ðx12; x23; x31; qÞ when three oper-

ators lie collinearly, that is, x1 ¼ ð0; 0; 0Þ, x2 ¼ ð0; 0; z2Þ,
and x3 ¼ ð0; 0; z2 þ z3Þ as described in the left panel of
Fig. 2. We looked at three distinct three-point functions,
chosen so as to reduce finite size effects, and whose
dependences are fixed by conformal invariance [2] to be

G̃ð3Þ
Vþ
μ V−

μV0
3

ðz2; z3Þ ¼ C̃Vþ
μ V−

μV0
3
; μ ¼ μ⊥ð¼ 1; 2Þ or 3;

G̃ð3Þ
SþS−V0

3

ðz2; z3Þ ¼ C̃SþS−V0
3
z2γS2 ; ð4Þ

when 0 ≪ z2; z3; z2 þ z3 ≪ L=2 on a periodic lattice. For
any other separations, we use these expressions to define
the effective z2 and z3 dependent OPE coefficients which
will display a plateau as a function of z2, z3 provided the
theory is a CFT. In the right part of Fig. 2, we show the
three effective OPE coefficients as a function of z3 at three
different fixed z2ð¼ 6; 8; 10Þ as determined on the 643

lattice using q ¼ 1.5. The plot demonstrates the independ-
ence of the three coefficients on z3 by a plateau over a wide
range of z3 that is not too small or too large. It also
demonstrates their independence on z2 since the data from
three different intermediate values of z2 are consistent, with
this being quite nontrivial especially for C̃SþS−V0

3
as it comes

from a cancellation with a factor z2γS2 . The conformal
symmetry in general allows nondegenerate OPE coeffi-
cients C̃Vþ

3
V−
3
V0
3
¼ ½ðaþ bÞ=b0� and C̃Vþ

μ⊥V
−
μ⊥V

0
3
¼ ðb=b0Þ,

with a ¼ 0; b ¼ b0 in free theory. From Fig. 2, it is evident
that a ≠ 0 and b ≠ b0, clearly indicating that the result is
for an interacting CFT.

FIG. 1. Mass anomalous dimension as computed at different
charges q. Left: the dependence of smallest Dirac eigenvalue
Λ̃1ðqÞ, normalized by free theory value, on L. The curves are the
fits to extract the leading L−γS dependence. Right: the finite size
scaling of the scalar two-point function G̃ðjx12jÞ at separations
jx12j ¼ L=4. The lines are the expected asymptotic dependence
G̃ðjx12j ¼ L=4Þ ∼ L2γS at different q, with γS determined
from Λ̃n.

FIG. 2. Left: a configuration of collinearly placed operators.
Right: the effective OPE coefficients C̃ijkðz2; z3; qÞ of three
different collinear three-point functions (distinguished by colors
and slightly displaced) are shown as a function of z3 at three
different fixed z2 ¼ 6 (open triangles), 8 (open circles), 10 (filled
circles).
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Relevance of the model to QED3.—We will show a
correspondence between the behavior of the CFT at one
particular q and QED3 with N flavors of massless two
component fermions. Our surprising observation for
which we will present empirical evidence is that, for
any finite N, as long as QED3 flows to an infrared fixed
point, the dominant effect of fermion determinant in
QED3 path integral is to induce a nonlocal quadratic
conformal action for the gauge fields with a coupling
q ¼ QðNÞ for some function Q that has to be determined
ab initio, with the only condition being QðNÞ ∼ ffiffiffiffiffiffiffiffiffiffiffi

32=N
p

for large values of N. That is, if the map QðNÞ is known
for all N, then one can study universal features of the N-
flavor QED3 by studying the same properties in the
conformal lattice model at the corresponding q ¼ QðNÞ
with nondynamical massless fermion sources, whose
purpose is simply to aid the construction of fermionic
n-point functions. In order to find QðNÞ, we propose to
map values of q in the lattice model to N in QED3 such
that the values of scalar anomalous dimensions γS,
determined nonperturbatively in both theories, are the
same. Such an identification of q and N is made in the
bottom panel of Fig. 3, where we have plotted γSðqÞ as a
function of q, and determined expected 1–σ ranges
of q that correspond to N ¼ 2; 4; 6; 8 flavor QED3 based
on estimates of γS from our previous lattice studies of
QED3 [23,24]; namely, we find the expected ranges
q ∈ ½2.32; 2.76�; ½1.88; 2.49�; ½1.57; 2.03�; ½1.33; 1.88� for
N ¼ 2, 4, 6, 8, respectively. Below, we discuss two
consequences of this connection.

In the lattice model, the two-point functions of both Va
μ

and V top
μ behave as jxj−4 with amplitudes CVðqÞ having a

nontrivial dependence on q and Ctop
V ðqÞ being quadratic in

q. In the top panel of Fig. 3, we have shown these q
dependences of the two amplitudes, wherein one finds Ctop

V
increases as q2=ð4π4Þ whereas CV decreases from the free-
field value 1=ð4π2Þ as a function of q, and the two curves
intersect around q ¼ 2.6; at this intersecting point,
ðVþ

μ ; V0
μ; V−

μ ; V
top
μ Þ form an enlarged set of degenerate

conserved vector currents in the lattice model. It is
fascinating that this value of q ≈ 2.6 lies in the probable
range corresponding to N ¼ 2 QED3, where such a
degeneracy is expected from a conjectured self-duality
of N ¼ 2 QED3 [41–43] (conditional to the theory being
conformal), and the q − N mapping presented here sug-
gests that such a degeneracy could occur in N ¼ 2 QED3

(and also numerically observed in [44]).
Quite strikingly, we also find evidence for microscopic

matching between QED3 and the conformal model studied
in this Letter. The probability distribution PðziÞ of the
scaled low-lying discrete Dirac eigenvalues zi ¼ Λi=hΛii
are universal to QED3 in the infrared limit and the lattice
model at the matched point QðNÞ. In the top panels of
Fig. 4, we show the nice agreement between PðziÞ for the
lowest three eigenvalues from N ¼ 2QED3 at two different
large box sizes l (measured in units of Maxwell coupling
g2) [23,24] which are in the infrared regime, and the
distributions PðziÞ from the lattice model discussed here at
q ¼ 2.5 which lies in the expected range of q for N ¼ 2.
Such an agreement is again seen between PðziÞ in the
lattice model at q ¼ 2.0 (which lies near the upper edge of
the expected range of q for N ¼ 8) and in N ¼ 8 QED3

FIG. 3. Bottom panel: mass anomalous dimension γS is shown
as a function of charge q. The filled circles are numerical
determinations in the lattice model and the black band is the
resulting spline interpolation of the data. The expected region
corresponding to N ¼ 2, 4, 6, 8 flavor QED3 are shown by the
rectangular boxes, so as to match the values of γS. The dashed line
is the unitarity bound on γS. Top panel: the CV in the lattice model
and Ctop

V ¼ q2=ð4π4Þ are shown as a function of q. The two
intersect in the region of q corresponding to N ¼ 2 QED3, as
inferred from the bottom panel.

FIG. 4. Distribution of scaled eigenvalues zi ¼ ðΛi=hΛiiÞ for
the three lowest eigenvalues (left to right) from the conformal
lattice model at q ¼ 2.5 (top) and q ¼ 2.0 (bottom) are compared
with those from N ¼ 2 and N ¼ 8 QED3. For the lattice model,
results from L ¼ 24, 28, 32 are shown, where as for QED3,
results from two large box sizes l (measured in units of coupling
g2) are shown.
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shown in the bottom panels. To contrast, such universality
in low-lying eigenvalue distribution has previously been
studied only between fermionic theories with a condensate
and random matrix theories (RMT) with same global
symmetries [45]. The results for PðziÞ from nonchiral
RMT [45] corresponding to N ¼ 2 and 8 flavor theories
are also shown for comparison in top and bottom panels of
Fig. 4, using analytical results in [46,47]; the observed
disagreement between PðziÞ in N ≥ 2 QED3 and the
corresponding RMTs is evidence for the absence of
condensate in parity-invariant QED3 with any nonzero
number of massless fermions (as previously observed by us
in [23]), and instead, the striking compatibility of the QED3

distributions with those from a CFT studied here is a
remarkable counterpoint.
Discussion.—We have presented a three-dimensional

interacting conformal field theory where one can compute
conformal data by a lattice regularization without fine-
tuning. We showed that by probing this CFTwith massless
spectator fermions, one is able to obtain a more elaborate
set of conformal data that is tunable based on the charge of
the fermions. For the sake of demonstration, we computed
only two- and three-point functions of fermion bilinear that
have the same charge. A simple extension for the near
future is a computation of n-point functions of four-Fermi
operators ψ̄n1qψ̄n2qψn3qψ ðn1þn2−n3Þq that is gauge invariant
nontrivially and has only connected diagrams. We dem-
onstrated a direct correspondence between the model with
charge-q fermions and anN-flavor QED3; by tuning q so as
to match a scaling exponent (we chose γS), one is able to
observe many other universal features between the two
corresponding theories. We stress that we did not perform
an all-order calculation in 1=N for QED3 [34,48,49] via a
lattice simulation of the model; rather, the lattice
calculation is an all-order computation in charge-q which
might or might not be expandable in 1=N via a mapping
q ¼ QðNÞ that we determined by a nonperturbative match-
ing condition. However, a lattice perturbation theory
approach to the results presented here would be interesting.
It would also be interesting to use this model to test for
robust predictions of infrared fermion-fermion dualities
[12,13] by tuning the value of q ¼ QðNÞ and adding
required level-k lattice Chern-Simons term det½ð1 −
GÞ=ð1þ GÞ�k [50].
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