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Thermodynamic uncertainty relations yield a lower bound on entropy production in terms of the mean
and fluctuations of a current. We derive their general form for systems under arbitrary time-dependent
driving from arbitrary initial states and extend these relations beyond currents to state variables. The quality
of the bound is discussed for various types of observables for an interacting pair of colloidal particles in a
moving laser trap and for the dynamical unfolding of a small protein. Since the input for evaluating these
bounds does not require specific knowledge of the system or its coupling to the time-dependent control,
they should become widely applicable tools for thermodynamic inference in time-dependently driven
systems.
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Introduction.—In a rough classification of nonequili-
brium systems, one can distinguish nonequilibrium steady
states (NESSs), periodically driven systems, and systems
relaxing into equilibrium or a NESS from the vast class of
systems that are driven in some time-dependent way
starting from an arbitrary initial state. A common character-
istic for all these classes is the fact that they inevitably lead
to entropy production, which is arguably the most charac-
teristic feature that separates nonequilibrium from thermal
equilibrium. Without having detailed knowledge of the
system, however, it is not easy to determine quantitatively
the entropy production associated with an experimentally
explored nonequilibrium process beyond the linear response
regime.
The Harada-Sasa relation, as one prominent tool for such

a quantitative inference, requires one to measure the
response of a NESS to an external perturbation [1]. It
has successfully been applied to, e.g., molecular motors [2]
and living cells [3]. Alternatively, from the measurement
of currents in phase space the entropy production can be
inferred provided the relevant phase space is indeed
accessible. In complex systems, this is a quite stringent
requirement [4,5]. Another strategy is to exploit operation-
ally accessible lower bounds on entropy production that do
not require access to all relevant degrees of freedom—like
the one based on the temporal asymmetry of fluctuating
trajectories [6–10].
For a NESS, a lower bound on entropy production that

can be obtained from the observation of any current and its
fluctuations has recently been established [11–14]. This so-
called thermodynamic uncertainty relation (TUR) holds for
any system that, on possibly some deeper unobserved level,
obeys a time-continuous Markovian dynamics on discrete
states or an overdamped Markovian dynamics on a con-
tinuous configuration space. As one immediate striking
consequence, the efficiency of molecular motors can be

bounded from above without knowledge of the specific
chemomechanical cycles that drive the motor by observing
the speed and its fluctuations when the motor runs against a
controlled external force [15–17].
For periodically driven systems, inferring the entropy

production, or at least an upper bound for it, is somewhat
more complex. There exist variants that either require
time-symmetric driving [18] or need input from the
time-reversed protocol [19]. In addition, there are a number
of more formal versions that cannot easily be applied under
experimentally realistic conditions [20–22]. An operation-
ally accessible version for arbitrary periodic driving has
recently been found that requires the response of the current
to a change of the driving frequency as an additional input
[23]. Finally, for systems relaxing either to equilibrium
or to a NESS, entropy production can be bounded by
measuring the fluctuations of a current and its mean value at
the end of the observation time [24,25].
In this Letter, we present the thermodynamic uncertainty

relation for the remaining huge class of time-dependently
driven systems mentioned at the very beginning. We will
show how by measuring an observable, its fluctuations, and
its change under speeding up the driving parameter(s), a
lower bound on the entropy production can be obtained.
The observable does not need to be a current; it could also
be, e.g., a binary variable characterizing the state of the
system at the final time or the integrated time spent in a
subset of states. As a paradigmatic illustration, we analyze
in a numerical experiment the dynamical unfolding of a
small peptide for which all relevant parameters have been
previously determined experimentally [26]. We show how
a bound on the associated entropy production can be
extracted from the observation of fluctuations without
any further input.
The lineup of the genuine uncertainty relations just

recalled should be distinguished from related inequalities,
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called generalized thermodynamic uncertainty relations
(GTURs), that are a consequence of the fluctuation theorem
[27,28]. These GTURs typically yield weaker bounds on
entropy production than the TURs described above, and
they become trivial in the longtime limit. A pertinent issue
with all these relations is to determine the current or
observable that leads to the best bound [29–34].
The discovery of the TUR has inspired the derivation of

similar relations not necessarily involving overall entropy
production for a variety of systems, including the role of
finite observation times [35,36], underdamped dynamics
[37–40], ballistic transport between different terminals
[41], heat engines [42–45], and stochastic field theories
[46] for the response to perturbing fields [47], for observ-
ables that are even under time reversal [48–50], for first-
passage times [51,52] and for arbitrary driving [53]. Last
but certainly not least, several works have addressed how to
generalize these concepts to the quantum realm—see, e.g.,
[41,54–61].
Main result for a current.—We consider a system

prepared in an arbitrary initial state. This system is then
driven through an arbitrary control λðvtÞ with speed
parameter v from t ¼ 0 to a final time t ¼ T . As a
consequence, the system exhibits a mean current JðT ; vÞ
and corresponding current fluctuations characterized by a
diffusion coefficientDJðT ; vÞ, both defined more precisely
below. Our first main result relates these quantities with the
mean total entropy production rate σðT ; vÞ in the interval T
through

½JðT ; vÞ þ ΔJðT ; vÞ�2=DJðT ; vÞ ≤ σðT ; vÞ: ð1Þ

In comparison to the ordinary TUR for NESSs [11,12],
there is first the dependence on the speed parameter v and,
second, the crucial additional term ΔJðT ; vÞ with differ-
ential operator

Δ≡ T ∂T − v∂v ð2Þ

that describes the response of the current with respect to a
slight change of the speed of driving v as well as with
respect to the observation time T . Consequently, all
quantities entering the left-hand side of Eq. (1) are
physically transparent and thus provide an operationally
accessible lower bound on entropy production. This result is
valid for driven overdamped Langevin dynamics of an
arbitrary number of coupled degrees of freedom and for
driven Markovian systems on a discrete set of states [62,66].
A first illustration: Moving trap.—The role of the addi-

tional response term can be illustrated with an overdamped
particle with mobility μ, which is dragged by a harmonic
trap with stiffness k. The system is initially prepared in
equilibrium. The center of the trap is moved from x0 ≡
λ0 ¼ 0 to xf ≡ λT ¼ vT in time t ¼ T with a constant
velocity v leading to a potential

V½x; λðvtÞ� ¼ k½x − λðvtÞ�2=2 ð3Þ

with protocol λðvtÞ≡ vt.
One current of interest in this system is the time-

averaged velocity νT ≡ ½xðT Þ − xð0Þ�=T , which is still a
stochastic quantity. Its mean, νðT ; vÞ≡ hνT i, depends
obviously on the observation time T and on the speed
of the protocol v, which yields the response ΔνðT ; vÞ.
For a generic current J, the quality of bounds like Eq. (1)

will be quantified throughout this Letter by plotting the
quality factor

QJ ≡ ½JðT ; vÞ þ ΔJðT ; vÞ�2
DJðT ; vÞσðT ; vÞ ≤ 1: ð4Þ

For the particle in a moving trap, the quality factor for
velocity,Qν, is shown in Fig. 1 as a function of observation
time T or, equivalently, of driving speed v. The bound,
Eq. (1), becomes strongest for T ≪ 1=ðμkÞ, i.e., for
observation times smaller than the relaxation time.
Remarkably, an estimate that yields up to ∼80% of the
total entropy production is obtained by just observing
the traveled distance of the particle without knowing the
strength of the trap. In the slow-driving limit, the dispersion
of the velocity becomes negligible, while heat is contin-
uously dissipated into the surrounding medium. As a
consequence, the original TUR for a NESS is violated
while relation Eq. (1) holds due to the additional response
|term.
Another current to which relation Eq. (1) can be applied

to is the time-averaged power

PðT ; vÞ ¼ 1

T

Z
T

0

dt
Z

dxpðx; t; vÞ∂tV½x; λðvtÞ�: ð5Þ

FIG. 1. Quality factors Qν and QP for velocity and power,
respectively, as a function of inverse driving speed T ¼ xf=v for
a moving trap. Solid lines (1-P): One particle, β ¼ 10.0, μ ¼ 1.0,
and xf ¼ vT ¼ 10.0. Dashed lines (2-P): Two interacting par-
ticles as shown in the inset. The parameters are given in the
Supplemental Material [62].
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Due to the Gaussian nature of the work fluctuations, it
follows thatDPðT ; vÞ ¼ PðT ; vÞ=β. Moreover, the entropy
production is bounded from above as βPðT ; vÞ=σðT ; vÞ ≥ 1
[62]. Consequently, the TUR for steady-state systems
[11,12] is always violated except in the longtime limit,
where the mean power converges to the mean total entropy
production rate. In contrast, our result Eq. (1) provides a
lower bound on the mean total entropy production rate,
which, in this case, is obviously quite different from the
ordinary TUR.
To illustrate the inequality Eq. (1) for a more complex

system, we investigate two interacting particles trapped in
the harmonic potential Eq. (3). We choose a Lennard-Jones
interaction between the particles [62] and analyze the
quality factors for the sum of both particle velocities,
i.e., the total traveled distance, and for the power applied to
the particles. As shown in Fig. 1, the quality factors are
similar compared to the ones for the noninteracting model
and reach also about 80%.
General setup for overdamped Langevin dynamics.—We

consider a system described by an overdamped Langevin
equation for the position xðtÞ in a thermal environment with
inverse temperature β,

∂txðtÞ ¼ μF½xðtÞ; λðvtÞ� þ ζðtÞ; ð6Þ

where μ denotes the mobility and ζðtÞ is Gaussian white
noise with strength 2D≡ 2μ=β. The system is driven by a
force F½x; λðvtÞ�, which depends on an external protocol
λðvtÞ that contains a speed parameter v. The driving
starts at t ¼ 0 with arbitrary initial distribution pðx; 0Þ
and runs until t ¼ T . The time evolution of the probability
density pðx; t; vÞ follows the Fokker-Planck equation
∂tpðx; t; vÞ ¼ −∂xjðx; t; vÞ with the probability current

jðx; t; vÞ≡ fμF½x; λðvtÞ� −D∂xgpðx; t; vÞ: ð7Þ

On the level of individual trajectories, we distinguish
“state variables” from (still fluctuating) “currents.”
Specifically, given a function aðx; λÞ, we define an instan-
taneous state variable as

aT ≡ a½xðT Þ; λðvT Þ�; ð8Þ

which depends on the final value of position and control.
A further observable is its time-averaged variant given by

AT ≡ 1

T

Z
T

0

dta½xðtÞ; λðvtÞ�: ð9Þ

The ensemble average of these stochastic quantities will be
denoted by aðT ; vÞ≡ haT i and AðT ; vÞ≡ hAT i, where
we make the dependence on the two crucial parameters
explicit.

For time-dependently driven systems, there exist two
kinds of currents. Both are odd under time reversal. The
first type of current is called a “jump current” and is of the
form

JIT ¼ 1

T

Z
T

0

dtdI½xðtÞ; λðvtÞ�∘_xðtÞ: ð10Þ

Here, ∘ denotes the Stratonovich product. The second type
is a “state” current given by

JIIT ¼ 1

T

Z
T

0

dtdII½xðtÞ; λðvtÞ�: ð11Þ

For jump currents, dI½xðtÞ; λðvtÞ� is an arbitrary increment,
whereas for state currents

dII½xðtÞ; λðvtÞ�≡ ∂tλðvtÞ∂λb½xðtÞ; λ�jλ¼λðvtÞ ð12Þ

involves the derivative of a state function bðx; λ) with
respect to the time-dependent driving. We denote the mean
values of these observables by JIðT ; vÞ≡ hJIT i and
JIIðT ; vÞ≡ hJIIT i. A prominent example for the first type
is the mean rate of entropy production in the medium [67]

σmðT ; vÞ≡ 1

T

Z
T

0

dt
Z

dxF½x; λðvtÞ�jðx; t; vÞ ð13Þ

with increment dIðx; λÞ ¼ βF½xðtÞ; λðvtÞ�. The mean total
entropy production rate

σðT ; vÞ≡ 1

T

Z
T

0

dt
Z

dx
j2ðx; t; vÞ
Dpðx; t; vÞ ð14Þ

additionally contains the entropy production rate of the
system [67]. The power applied to a system as given in
Eq. (5) belongs to the second type of currents and is
obtained by choosing bðx; λÞ ¼ Vðx; λÞ, where Vðx; λÞ is an
external potential.
Fluctuations of all these observables can be quantified by

the effective “diffusion coefficient”

DXðT ; vÞ≡ T ðhX2
T i − hXT i2Þ=2 ð15Þ

and XT ∈ faT ; AT ; J
I;II
T g. For both types of current observ-

ables as defined in Eqs. (10) and (11), the TUR, Eq. (1),
holds true [62].
Uncertainty relation for state variables.—Our second

main result is a thermodynamic uncertainty relation for end-
point and time-integrated state observables as defined in
Eqs. (8) and (9). For both types of observables, it reads [62]

½ΔAðT ; vÞ�2=DAðT ; vÞ ≤ σðT ; vÞ; ð16Þ

where AðT ; vÞ ∈ faðT ; vÞ; AðT ; vÞg. For aðT ; vÞ, this
relation shows that a lower bound for the mean total entropy
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production rate can be obtained by just observing the final
state of the system. There is neither information required
about the initial distribution nor information about the forces
acting on the particle. This bound is especially useful for
finite-time or relaxation processes where the total entropy
production is not necessarily time extensive.
Sketch of the proof.—To sketch the derivation of our

main results, Eqs. (1) and (16) (see [62] for a full proof), we
use a recently obtained inequality, called the “fluctuation-
response inequality,” which relates the fluctuations of an
observable with its response to an external perturbation
[47]. Specifically, for this perturbation we choose the
additional force ϵYðx; t; ϵÞ with a parameter ϵ. Averages
in the perturbed dynamics are denoted by h·i†. For a small
force, i.e., for ϵ → 0, the fluctuation-response inequality
bounds the diffusion coefficient, Eq. (15), for each choice
of XT as [47,62]

DXðT ; vÞ ≥ ð∂ϵhXT i†jϵ¼0Þ2
1=T

R
T
0 dthY½xðtÞ; t; ϵ�2=Di†jϵ¼0

: ð17Þ

We choose Yðx; t; ϵÞ ¼ jðx; t0; v†Þ=pðx; t0; v†Þ, scale time
t0 ¼ ð1þ ϵÞt as in Refs. [25,37], and additionally modify
the speed parameter v† ¼ v=ð1þ ϵÞ. The perturbed dynam-
ics then corresponds to a system that evolves slightly
slower or faster in time. The denominator in Eq. (17)
becomes the total entropy production rate σðT ; vÞ. The
nominator simplifies to ΔAðT ; vÞ for state variables and to
JI;IIðT ; vÞ þ ΔJI;IIðT ; vÞ for currents leading to our main
results, Eqs. (1) and (16).
Generalization to discrete states: Protein folding.—Our

two main results, Eqs. (1) and (16), hold not only for
overdamped Langevin systems but also for systems with
discrete states. A paradigm for such a system is a protein
undergoing conformational transitions. Experimental stud-
ies aim to infer the structure of the underlying Markovian
network that possibly contains hidden folded states. For the
protein Calmodulin, the transition rates between various
folded and unfolded states have been measured as a
function of an external force generated by optical tweezers
in Ref. [26].
We apply our bounds to this system by using these

experimental data. In Fig. 2(a), the topology of the network
consisting of six different conformational states (denoted as
in the original paper) is shown. Starting in equilibrium at a
constant external force of f0 ¼ 9.0 pN, we drive the system
in a force ramp according to the driving protocol λðvtÞ≡
f0 þ vtðf1 − f0Þ with f1 ¼ 11.0 pN and vT ¼ 1.0.
For three different observables, we consider the quality

factor of the resulting bound on the entropy production
associated with this dynamical unfolding. One estimate
according to Eq. (1) is obtained by observing the current
between the unfolded state U and any of the adjacent states
F ∈ fF12; F23; F34g,

νUF
T ≡ ½mUFðT Þ −mFUðT Þ�=T : ð18Þ

The variable mUF counts the total number of transitions
from the unfolded state U to any of these states F and mFU
is the number of reverse transitions. Two further bounds are
obtained using aði; λÞ ¼ δi;F12

in Eq. (8) and aði; λÞ ¼ δi;U
in Eq. (9), which correspond to the characteristic functions
of state F12 and U, respectively [68]. The first choice
corresponds to the probability for the protein to be in state
F12 at the end of the observation time and the latter one to
the overall fraction of time the system has spent in the
unfolded state U. We denote the corresponding quality
factors by Qa and QA, respectively. The quality factors
obtained from monitoring the mean, the fluctuations, and
the response of these three observables are shown in
Fig. 2(b). The quality factor QA becomes best at slower
driving, T ≃ 10, where it yields about 75% of the total
entropy production rate. The estimate QνUF through the
current observable is especially strong for intermediate
times 1.0 ≤ T ≤ 2.0. The quality factor Qa based on the
observation of the final state is always weaker than the
other two except for fast driving speeds T ¼ 1=v ∼ 10−2,
where it reaches a maximal value of about 40% as shown in
the inset of Fig. 2(b). Obviously, in future experiments, one
should explore the bounds resulting from as many exper-
imentally accessible state and current observables as
possible since we do not yet have a criterion for selecting
a priori the observable that will yield the strongest bound.

(a)

(b)

FIG. 2. Dynamical unfolding of Calmodulin. (a) Network of its
six states comprising an unfolded state U, two partially folded
states F12 and F34, a folded state F1234, and two misfolded states
F23 and F123. The force-dependent transition rates between the
six states as extracted from Ref. [26] are given in the Supple-
mental Material [62]. (b) Three quality factors as defined in the
main text as a function of the inverse driving speed T ¼ 1=v.
Inset shows data for fast driving.
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Concluding perspective.—We have derived a universal
thermodynamic uncertainty relation that holds for current
and state variables in systems that are time-dependently
driven from an arbitrary initial state over a finite time
interval. The mean and fluctuations of any such observable
yields a lower bound on the overall entropy production.
Depending on the conditions, the observables leading to the
relative best bound may change. For observables based on
currents, our relation becomes the established ones for the
very special cases of time-independent driving, of periodic
driving, and of relaxation at constant control parameters as
summarized in Table I. In this sense, our work presents a
unifying perspective on extant TURs.
With these relations, we have provided universally

applicable tools that will allow thermodynamic inference
in time-dependently driven systems. We emphasize that it is
neither necessary to know the precise coupling between the
system and the control nor to know the interactions within
the system. It suffices that the experimentalist can change
the overall speed of the control slightly and measure the
resulting response of an observable. These rather weak
demands should facilitate the application to systems
beyond colloidal particles and single molecules manipu-
lated with time-dependent optical traps. Finally, as a
challenge to theory, it will be intriguing to explore whether
and how these relations can be extended to time-dependently
driven open quantum systems.
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