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The famous Kibble-Zurek mechanism offers us a significant clue to study quantum phase transitions out
of equilibrium. Here, we investigate an intriguing phenomenon of a spin-orbit coupled Bose-Einstein
condensate by quenching the Raman coupling strength from a high-symmetry phase (nonmagnetic phase)
to a low-symmetry phase (magnetic phase). When crossing the critical point, the fluctuation of momentum
distribution leads to delayed bifurcation structures. Simultaneously, the domain information emerges in
momentum space. Moreover, the universal scalings of spatiotemporal dynamics are extracted from the
fluctuations and domains, which manifests homogeneous and inhomogeneous Kibble-Zurek power laws at
different timescales. Our work demonstrates a paradigmatic study on the inhomogeneous Kibble-Zurek
mechanism.
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Introduction.—The nonequilibrium phase transition is
an intriguing and ubiquitous phenomenon in nature,
ranging from cosmology and condensed matter to ultra-
cold atom systems. Understanding such a phenomenon is
one of the most challenging problems in modern physics.
Only a few tools have emerged for elaborating a non-
equilibrium critical phenomenon. The remarkable Kibble-
Zurek mechanism (KZM) [1,2] is one paradigm of the
tools to depict a dynamic phase transition, modeling the
critical slowing-down phenomenon [3,4] and the forma-
tion of topological defects in spontaneous continuous
symmetry-breaking phase transitions by universal power-
law scalings.
The KZM was originally introduced in the evolution

of the early Universe [1]. It has been experimentally
investigated for both classical and quantum phase transi-
tions in a wide variety of systems, such as cosmic micro-
wave background [5], liquid helium [6,7], superconductor
[8,9], liquid crystals [10], and colloidal monolayers [11].
Recently, the KZM has also been extended to ultracold
atoms [12–22]. Until now, most experiments are mainly
demonstrated on a homogeneous phase transition, while
inhomogeneity of the system is omnipresent; thus, the
inhomogeneous phase transition is a generic problem.
Theoretical works unravel that inhomogeneity can induce
the suppression effect of topological defects across a phase
transition [23–35], beneficial to exploring the adiabatic
preparation of a qubit and realizing feasible protocols for

adiabatic quantum computation [36]. Currently, such an
inhomogeneous mechanism has been far less investigated
in experiments (see ion trap systems in Refs. [37,38] and
cold atom systems in Refs. [16,20,24]). Here, the main
difficulty in testing the inhomogeneous KZM is that
extracting the power-law exponents requires tuning the
quench rate over orders of magnitude to obtain an adequate
signal. The advent of the Raman-induced spin-orbit (SO)
coupled Bose-Einstein condensate (BEC) [39–42] renders a
new test bed with a well-controlled feature for exploring
dynamic quantum phase transitions in ultracold atom
systems.
In this Letter, we study the inhomogeneous KZM with

a Raman-induced one-dimensional (1D) SO coupled
BEC. This system possesses three phases: the stripe
phase, magnetized phase (MP), and nonmagnetized
phase (NMP) [42–44]. Crossing from the NMP to the
MP is a second-order quantum phase transition [43,45].
This transition occurs when the Raman coupling
strength goes down across a critical value, which gives
rise to the system entering the magnetic order phase, and
breaks a Z2 symmetry. In the experiment, we carry out
quench dynamics via tuning Raman coupling strength
from the NMP to the MP. The fluctuation of momentum
distribution and the correlation length are measured,
whereby quench rates are varied by 3 orders of magnitude.
Across the critical point, delayed bifurcation structure of
momentum distribution is observed. The fluctuation of
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momentum distribution collapses into a single curve via
rescaling the time, satisfying the universality hypothesis
[4]. We acquire the correlation length from the momentum
distribution as well, indicating the emergence of domain
structures. Furthermore, the power-law scalings of char-
acteristic time and length are extracted, manifesting the
inhomogeneous Kibble-Zurek mechanism.
The system and KZM.—Our experiments are based on a

Raman-induced 1D SO coupled BEC of 87Rb, produced in
the crossed dipole trap, as sketched in Fig. 1(a).
A bias magnetic field B ≈ 14.5 G is applied in t
he ẑ direction, giving the quantization axis and Zeeman
splitting of 10.2 MHz. Two Raman beams with
wavelength λ ¼ 787 nm shine on the BEC and couple
magnetic sublevels j1;−1i (spin up j↑i) and j1; 0i (spin
down j↓i) in F ¼ 1 manifolds to form spin-momentum
locking along the x̂ direction. The Hamiltonian reads
(ℏ ¼ 1)

H ¼ ðqx − kLσzÞ2
2m

þ Ω
2
σx þ

δ

2
σz þHI; ð1Þ

where m, σx;z, Ω, δ, kL, and HI are the atomic mass, Pauli
matrices, Raman coupling strength, two-photon Raman
detuning, recoil momentum, and interaction, respectively.
Here, we focus on the case δ ¼ 0. The single-particle
dispersion EðqxÞ for different strengths Ω is shown in

Fig. 1(b). For Ω < 4EL (EL ¼ k2L=2m, kL ¼ ffiffiffi
2

p
π=λ),

EðqxÞ has two local minima, and bosons condense in one
of the minima, i.e., the MP, which spontaneously breaks a Z2

symmetry and has nonzero magnetization. Whereas for
Ω > 4EL, EðqxÞ has only one minimum, i.e., the NMP
[42–44]. The interaction HI of the two-component con-
densate includes spin-independent interaction c0 ¼ g↑↑ and
spin-dependent interaction c2 ¼ g↑↓ − g↑↑, where gij ¼
4πNaij=m is the interaction strength with aij (i; j ¼ ↑;↓)
being the scattering length and N being the atom number
[46]. After minimizing the total energy, one obtains the
phase diagram. Thus, the system undergoes a continuous
quantum phase transition from the NMP to the MP. The
transition point is modified by c2. In our case, the shifted
value is negligible due to small jc2j and low density of the
condensate; see [43,47] for details.
In Fig. 1(c), the general KZM is delineated. Here, the

dynamics of spontaneous symmetry breaking induced by a
control parameter κ is considered. From the critical
phenomena, a second-order phase transition is character-
ized by the divergence of both equilibrium correlation
length ξ ∼ jεj−ν and equilibrium relaxation time τ ∼ jεj−zν,
where the critical exponent ν and dynamic critical exponent
z are determined by the universality class of the phase
transition [4]. ε ¼ ðκc − κÞ=κc is the reduced distance to
critical point κc.
The KZM describes the critical dynamics by three

stages: an adiabatic stage far away from critical point; a
frozen stage (impulse stage) in the vicinity of the critical
point, where the system is effectively frozen due to the
divergence of relaxation time (critical slowing-down phe-
nomenon); and another adiabatic stage with a broken
symmetry phase [see Fig. 1(c)]. Within the frozen stage,
the system hardly follows the ground state of its instanta-
neous Hamiltonian. It unfreezes only at a delayed time after
passing the critical point. For a finite linear quench
εðtÞ ¼ t=τq (quench time τq), freeze-out occurs when
τ is comparable to the timescale of the quench, i.e.,

τ ∼ εðtÞ=_εðtÞ. Thus, frozen time (delay time) td ∼ τνz=ð1þzνÞ
q .

Meanwhile, when it unfreezes, topological defects form,
and the average size of topological defects is determined

by ξ ∼ τν=ð1þzνÞ
q .

But the inhomogeneity in a system leads to a spatial
dependence of the critical point κcðxÞ and the local quench
time τqðxÞ. As a result, the phase transition does not occur
simultaneously in the whole system, and the homogeneous
KZM described above breaks down, giving rise to different
scaling laws for the number of defects as a function of the
quench time.
When the critical point is locally reached, there exists a

causal horizon related to the velocity of sound s and the
propagation front of the phase transition vF [23,25–35].
And s at frozen time and vF are estimated as

(a) (c)

(b) (d)

FIG. 1. KZM with a Raman-induced 1D SO coupled BEC.
(a) Setup for a 1D SO coupled BEC. The orthogonal red (Eπ) and
blue (Eσ) beams construct Raman coupling. (b) Second-order
quantum phase transition occurs from the nonmagnetized phase,
through the critical point Ωc ¼ 4EL, to the magnetized phase
with two minima at qx ¼ q�. (c) The sketch of the KZM,
displaying three stages: two adiabatic stages and an impulse
stage. Domain structures are shown for three different quench
rates in momentum space. (d) The sketch of the inhomogeneous
KZM. The BEC stays in a trap (gray). The blue solid, red dashed,
and purple dashed curves denote velocity of sound s and the
velocity of the propagation front of the phase transition vF1 with
large τq and vF2 with small τq, respectively.
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s ¼ ξ

τ
∼ ½τqðxÞ�−½νðz−1Þ�=ð1þνzÞ;

vF ¼
���� dxFdtF

���� ¼
���� dτqðxÞdxF

����−1; ð2Þ

respectively, where xF and tF represent the location and time
of finding the front, respectively. For a homogeneous
system, vF diverges. To form defects, s < vF is required.
Therefore, in a homogeneous system, defects always
emerge. Nevertheless, in an inhomogeneous system, the
phase transition does not occur simultaneously in the whole
system, when s > vF information can propagate from a low-
symmetry to a high-symmetry phase. This exchange of
information affects the choice of the high-symmetry phase,
suppressing the formation of defects. Specifically, regarding
fast quenches, the number of defects is well predicted by a
power-law scaling in agreement with the homogeneous
KZM due to vF2 > s everywhere [Fig. 1(d)]. Regarding
slow quenches, there exists novel power-law scaling
behavior of the number of defects, characterized by a larger
exponent due to vF1 < s in certain locations [Fig. 1(d)].
Alternatively, local drive gives rise to a more noticeable
suppression of defect formation. Hence, for a wide range of
quench rate, turning behavior of exponents is exhibited.
Quenches and bifurcated structures of the momentum

distribution.—In the experiment, we vary Raman
coupling to explore the dynamical quantum phase tran-
sition. First, the BEC of about 2 × 105 atoms is produced
in j↑i. Then we adiabatically increase the strength Ω
to the initial Raman coupling Ωi ¼ 5.0EL; thus, the
BEC is prepared in the ground state of NMP, i.e.,
1=

ffiffiffi
2

p ðj↑; qx ¼ 0i þ j↓; qx ¼ 0iÞ. Finally, Raman coupling
is linearly quenched from Ωi ¼ 5.0EL to the final Raman
coupling strength Ωf ¼ 2.0EL with different quench times
τq to carry out the measurements. Meanwhile, detuning δ
keeps to 0, guaranteed by a stable magnetic field [48]. For
detection, we apply the spin-resolved time of flight (TOF)
of 25 ms and image along the ẑ direction to record the
momentum distribution of atom clouds in spin up n↑ðqÞ
and spin down n↓ðqÞ.
Momentum distributions of the atoms nðq; tÞ ¼

n↑ðq; tÞ þ n↓ðq; tÞ with different τq are shown in Fig. 2.
For Ω > Ωc, the atoms are at quasimomentum q ¼ 0. For
Ω < Ωc, the atoms form a delayed bifurcated structure as Ω
ramps down. Meanwhile, the domain structures are also
observed, whereafter the atoms are again distributed adia-
batically atΩ ¼ 2EL if τq is large enough. As τq is gradually
increased, the bifurcation point is approaching the equilib-
rium value. The bifurcation structure of the quasiadiabatic
state is also plotted as a benchmark, reflecting the bifurcation
point exactly as the critical point at Ωc ¼ 4EL.
Temporal scaling.—To quantitatively investigate the

temporal scaling of the delayed bifurcation structures,
we describe the fluctuation of momentum distribution by
its standard deviation

ζðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
q2xnðqx; tÞdqxR
nðqx; tÞdqx

−
½R qxnðqx; tÞdqx�2
½R nðqx; tÞdqx�2

s
; ð3Þ

where nðqx; tÞ ¼
P

qy
½n↑ðq; tÞ þ n↓ðq; tÞ�. For com-

parison, among different τq, ζðtÞ is normalized as
ZðtÞ ¼ ½ζðtÞ − ζmin�=ðζmax − ζminÞ, where ζmax (ζmin) is
the maximum (minimum) of ζðtÞ.
In Fig. 3(a), ZðtÞ is plotted as a function of time t with

different τq. As can be seen, the dynamics of ZðtÞ can be
depicted in three stages over a wide range of τq. First,
below the critical point Ωc, ZðtÞ does not grow. Second,
just after passing Ωc, the system is dominated by a critical
slowing-down phenomenon, and ZðtÞ remains low. The
system enters the impulse stage. Finally, ZðtÞ increases and
saturates, since the system unfreezes. The rapid growth of
ZðtÞ signifies the emergence of domains in our system. The
saturation of ZðtÞ implies the system evolves adiabati-
cally again.
According to the growth behavior of ZðtÞ, an empirical

sigmoid function is applied to fit the data [47]. When the
system unfreezes, to characterize the delay time td, we set
ZðtdÞ ¼ 0.5 based on the fitting function of ZðtÞ [see
Fig. 3(a), black dashed line parallelling the horizontal axis];
thus, td is figured out for different τq. In Fig. 3(b), we plot
td as a function of τq in log-log scale. It is obvious to see
that there are two power-law scalings, and the turning range
is around 20–50 ms. A linear fit in the log-log scale gives
the exponent of α1 ¼ 0.55ð2Þ and α2 ¼ 0.97ð3Þ, respec-
tively. We complement these measurements with numerical
simulations based on a truncated Wigner method with the
Gross-Pitaveskii equation (GPE) (see [47,49] for details),

FIG. 2. Delayed bifurcation structures of momentum distribu-
tion as a function of the strengthΩ in the dynamic quantum phase
transition. The photos of momentum distribution with different Ω
are arranged together for a fixed τq. From left to right, bifurcation
structures for quench time τq ¼ 10, 30, 50, and 200 ms equi-
librium state, respectively.
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giving α1 ¼ 0.50ð2Þ and α2 ¼ 1.02ð3Þ, respectively, in
good agreement with the experimental data. After rescaling
time t by t=td, all the ZðtÞ curves approximately collapse
into a single curve, shown in Fig. 3(c), satisfying the
universality hypothesis [4]. The exponent α1 ¼ 0.55ð2Þ
basically satisfies the homogeneous KZM, since
the mean field theory gives ν ¼ 1=2, z ¼ 2, and, thus,
α1 ¼ νz=ð1þ zνÞ ¼ 1=2.
In Fig. 3(c), the system demonstrates the inhomo-

geneous KZM with a larger exponent α2 ¼ 0.97ð3Þ.
Here, the harmonic trap plays a primary reason for
providing inhomogeneity, while spin-dependent interac-
tion c2 is responsible for the simultaneous observation of
homogeneous and inhomogeneous KZ phenomena.
Specifically, the harmonic trap gives the spatial-dependent
density, together with Raman coupling, which leads to the
local critical point and local speed of sound. The speed of
sound is estimated as s ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1ðxÞ=m�p

, where G1ðxÞ
denotes the interaction strength and m� is the
effective mass modulated by spin-orbit coupling [50].
Meanwhile, the local critical point implies a local speed
of front vF ∼ ðΩi − ΩfÞR2

x=ðjc2jτqxÞ, where Ωi (Ωf)
is Raman coupling in the NMP (MP) and Rx is the
Thomas-Fermi radius along the x̂ direction. In our
system, c2 ¼ −3.61 × 10−14 Hz cm3, and the peak density

of condensate is around 1013= cm3; along with
Raman coupling, those ingredients render s > vF when
τq exceeds 20–50 ms (see [47] for details). Thus,
according to the inhomogeneous KZM, the system
enters the inhomogeneous region, and a larger exponent
is observed.
Spatial scaling.—For the spatial scaling, we investigate

the domain information in momentum space by adopting
the same experimental protocol as temporal scaling.
To characterize the domain information, it is appropriate
to define a correlation functionGðsÞwith correlation length
ξ as the width of GðsÞ. Furthermore, one can obtain that
GðsÞ is the Fourier transform of the momentum distribution
PðpÞ with ξ ∼ ℏ=Δp (Δp is momentum dispersion)
[47,51]. Hence, in the experiment, it is convenient to
perform spin-resolved TOF to extract ξ.
In Fig. 4(a), typical domain structures in momentum

space are shown with different quench times τq. Domain
numbers of momentum space Nq clearly depend on τq.
Qualitatively, for fast quench (for instance, τq ¼ 4 ms), the

(a)

(b) (c)

FIG. 3. Standard deviation of momentum distribution in the
dynamic quantum phase transition. (a) Standard deviation of
momentum distribution Z as a function of time t for different
quench times τq. The solid curves are based on the sigmoid
function. (b) The dependence of td (circles) on the quench time τq
is well fit by power laws (solid curves) with two different scaling
exponents: α1 ¼ 0.55ð2Þ in the homogeneous region (HR, light
cyan) and α2 ¼ 0.97ð3Þ in the inhomogeneous region (IHR,
purple). (c) Standard deviation for 24 quench times from τq ¼
1 ms to τq ¼ 360 ms collapse into a single curve when time is
scaled by td. The solid curve shows the best fit based on the
sigmoid fitting function.

(a)

(b) (c)

FIG. 4. Spatial correlations in the dynamic quantum phase
transition. (a) Domain structure of spin-up (top row) and spin-
down (lower row) images near the time t ¼ 1.1td at different
quench times τq. (b) Column-integrated momentum distribution
of n↑ and n↓ for quench time τq ¼ 25 ms. ODtot is the sum of
optical density along the qy direction. The circles (triangles)
denote experimental data of n↑ (n↓). The red solid curves are
based on numerical smoothing. Each green diamond is a peak,
i.e., a domain. (c) Domain numbers in momentum space Nq
(circles) as a function of τq in log-log scale. Nq is the sum of
domain numbers in n↑ and n↓. The two solid lines are linear
fitting lines, giving spatial scaling exponents β1 ¼ 0.28ð5Þ in the
HR (cyan) and β2 ¼ 0.42ð1Þ in the IHR (purple).
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size of domains is relatively large, and, thus,Nq is little. For
slower quench, the size of domains decreases with τq,
signifying more domain appearing in momentum space.
In Fig. 4(b), we plot column-integrated momentum dis-
tribution of spin up and down for τq ¼ 25 ms to quantify
the domains. A multiple-peak structure in momentum space
is exhibited, reflecting the interplay of different defects in
real space after the TOF. We define the number of peaks as
domain numbers in momentum space Nq and the width of
single peak Δp as the average size of the domain. After the
TOF, one has Δp ∼ ℏtTOF=mξ [52], and the total width of
the momentum distribution is ℏ=L, where tTOF ¼ 25 ms
and L is the total sample width in real space. Thus, one
obtains Nq ∝ ξ (see [47] for details).
Nq as a function of τq are plotted in Fig. 4(c). A linear fit

in the log-log scale gives the exponent of β1 ¼ 0.28ð5Þ,
basically satisfying the mean field theory β1 ¼ 1=4 for the
homogeneous KZM, and β2 ¼ 0.42ð1Þ, corresponding to
the inhomogeneous KZM. Meanwhile, the fit indicates that
the turning range is also around 20–50 ms, matching the
position we obtained in temporal scaling. The exponents
numerically extracted by GPE give β1 ¼ 0.30ð7Þ and
β2 ¼ 0.45ð4Þ; for details, see [47].
Conclusion.—In conclusion, we uncover a dynamics of

quantum phase transition in a SO coupled BEC. Quenching
through the critical point from the NMP to the MP displays
the delayed bifurcation structures of momentum distribution.
Moreover, spin domain information is also extracted from
momentum distribution. The measured spatiotemporal scal-
ings possess turning behavior, and the exponents are in
agreement with the predictions of the homogeneous and
inhomogeneous KZM with different quench times. For our
spin-1=2 system, by applying adiabatic quenches with the
inhomogeneous KZM, qubit states might be prepared and
provide a fundamental idea for adiabatic quantum compu-
tation [36,53]. Besides, our work also paves the way to study
spin domain coarsening dynamics (phase ordering kinetics)
[54,55] in a SO coupled BEC, and coarsening dynamics with
such a quantum system can serve as a fertile ground to study
far-from-equilibrium physics.
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