
 

Continuous Phase Transition without Gap Closing in Non-Hermitian Quantum
Many-Body Systems

Norifumi Matsumoto ,1,* Kohei Kawabata,1 Yuto Ashida,1,2 Shunsuke Furukawa ,3 and Masahito Ueda1,2,4
1Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
3Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

4RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

(Received 3 January 2020; accepted 17 November 2020; published 21 December 2020)

Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition
between gapped phases is shown to occur without closing the energy gap Δ in non-Hermitian quantum
many-body systems. Here, the relevant length scale ξ ≃ vLR=Δ diverges because of the breakdown of the
Lieb-Robinson bound on the velocity (i.e., unboundedness of vLR) rather than vanishing of the energy gap
Δ. The susceptibility to a change in the system parameter exhibits a singularity due to nonorthogonality of
eigenstates. As an illustrative example, we present an exactly solvable model by generalizing Kitaev’s toric-
code model to a non-Hermitian regime.
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Quantum phase transitions have long been a subject of
active research in quantum many-body physics. A quantum
phase is characterized by the low-energy and long-distance
properties of a system such as the decay behavior of
correlation functions of local operators in the ground state,
the ground-state degeneracy, and its stability against local
perturbations [1]. At the transition point between different
quantum phases, physical quantities show singularities
reflecting changes in the long-distance behavior [2]. For
conventional quantum many-body systems described by
local and Hermitian Hamiltonians, it is widely accepted that
a continuous quantum phase transition between gapped
phases is accompanied by closing of an excitation gap Δ.
This correspondence is among the most fundamental
properties of continuous phase transitions, and two gapped
ground states that are connected without gap closing are
generally considered to belong to the same quantum phase
[3]. This implies that long-distance properties of a ground
state are preserved under continuous deformation of a local
and gapped Hamiltonian. In fact, a change in the ground
state under such deformation can be represented as a finite-
time evolution generated by a local effective Hamiltonian,
which preserves the long-distance structure of the ground
state [1,3,4].
Meanwhile, non-Hermitian physics [5–7] has recently

attracted widespread attention [8–12]. Non-Hermiticity
originates from gain and loss of energy or particles in
classical systems [13–19], and non-Hermitian quantum
dynamics is realized under continuous observation without
quantum jumps [20–32]. Some fundamental principles in
Hermitian systems break down in non-Hermitian systems.
Even in single-particle problems, unique topological
phases [33–42] and an unconventional bulk-boundary

correspondence due to anomalous sensitivity to boundary
conditions [43–50] have been found with no counterparts in
Hermitian systems. In many-body systems [24–27,51–56],
non-Hermiticity can induce quasi-long-range ordered
phases with power-law decaying correlations even without
continuous symmetry in the Hamiltonian [24]. Non-
Hermiticity also leads to unconventional renormalization-
group flows that are forbidden in Hermitian systems
[27,51–53]. However, the crucial role of an energy gap
in quantum phase transitions has yet to be fully understood
in non-Hermitian many-body systems.
In this Letter, we show that a continuous quantum phase

transition can occur even without gap closing in non-
Hermitian quantum many-body systems. In such a tran-
sition, the susceptibility, which is related to the spatial
correlation and fluctuations of a local physical quantity,
develops a singularity because of the nonorthogonality of
eigenstates. This makes a sharp contrast with the Hermitian
case, in which the singularity of the susceptibility origi-
nates from gap closing [57–59]. These facts imply that the
relationship between the correlation length and the
energy gap is fundamentally altered and the framework
of continuous quantum phase transitions should be
reconsidered in non-Hermitian systems. By way of illus-
tration, we construct an exactly solvable non-Hermitian
model by introducing non-Hermiticity to Kitaev’s toric-
code model [60].
Breakdown of the Lieb-Robinson bound.—Under con-

tinuous deformation of a local and gapped Hermitian
Hamiltonian HðsÞ, a change in the ground state jψ0ðsÞi
can be described by a local unitary transformation UðsÞ, or
a finite-time evolution generated by a local effective
Hermitian Hamiltonian DðsÞ [1,3,4]. For a unique ground
state, such a transformation is given by
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jψ0ðsÞi ¼ UðsÞjψ0ð0Þi; ð1Þ

UðsÞ ≔ S0 exp
�Z

s

0

iDðs0Þds0
�
; ð2Þ

where S0 exp denotes the s0-ordered exponential andDðsÞ is
obtained from HðsÞ as

iDðsÞ ¼
Z

∞

−∞
FðtÞeiHðsÞt

�
d
ds

HðsÞ
�
e−iHðsÞtdt: ð3Þ

The s0-ordered exponential in Eq. (2) is defined by
S0exp½R s

0 iDðs0Þds0�≔P∞
n¼0ð1=n!ÞS0½R s

0 iDðs0Þds0�n, where
S0½Dðs01Þ � � �Dðs0nÞ� is defined by

P
p∈Sn θðs0pð1Þ − s0pð2ÞÞ � � �

θðs0pðn−1Þ − s0pðnÞÞDðs0pð1ÞÞ � � �Dðs0pðnÞÞ in terms of the

Heaviside unit-step function θ. In Eq. (3), FðtÞ is an
odd function that decays faster than any negative power
of t for large jtj and whose Fourier transform F̃ðωÞ is equal
to −1=ω for jωj > Δ and infinitely differentiable. The
presence of a finite gap Δ > 0 guarantees that only ω with
jωj > Δ matters, where F̃ðωÞ is smooth and FðtÞ decays
sufficiently fast [3,4].
The locality of DðsÞ is guaranteed by the presence of a

finite gap and the Lieb-Robinson bound [61–63]—the latter
determines the speed limit vLR with which an effective
range of the support of a local operator ðd=dsÞHðsÞ
expands under a finite-time evolution generated by HðsÞ.
One can restrict the action of the time-evolved operator to
this effective range since the operator distance (i.e., the
operator norm of the difference) between the original and
restricted operators is negligibly small [64]. The integrand
in Eq. (3) thus remains local for finite t, and only the
integral over small jtj is relevant because of the fast decay
of FðtÞ, which is guaranteed by the presence of a finite gap
as mentioned above. Owing to the locality of DðsÞ,
properties of jψ0ð0Þi with respect to a local operator O
are preserved under the local unitary transformation in
Eq. (1). The operator U†ðsÞOUðsÞ in the expectation value
hψ0ðsÞjOjψ0ðsÞi ¼ hψ0ð0ÞjU†ðsÞOUðsÞjψ0ð0Þi remains
local because of the Lieb-Robinson bound [3,4]. Here an
effective range of each local term inDðsÞ is estimated to be
ξ0 þ vLR=Δ, where ξ0 denotes the supremum of the
interaction range (i.e., the diameter of the support of a
local term in the Hamiltonian) of HðsÞ. Because of finite
vLR, the locality of DðsÞ breaks down and a change in
jψ0ðsÞi can be nonlocal only for Δ ¼ 0, which corresponds
to a continuous phase transition.
In contrast, the Lieb-Robinson bound can, in general,

break down in open-system dynamics conditioned on
measurement outcomes [29] such as a non-Hermitian evo-
lution corresponding to the null-jump process. Let H be a
local non-Hermitian Hamiltonian H ¼ P

Z ðhHZ þ ihAHZ Þ,
where hHZ and ihAHZ represent the Hermitian (H) and anti-
Hermitian (AH) parts of the local term with support Z.

We consider the time evolution of a local operator O with
support X: OðtÞ ¼ expðiH†tÞO expð−iHtÞ. Then we have

d
dt

OðtÞ
����
t¼0

¼
X

Z∶Z∩X≠∅
i½hHZ ;O� þ

X
Z

fhAHZ ;Og: ð4Þ

For the Hermitian parts hHZ ’s, commutators, which are taken
with O, vanish for those Z’s that satisfy Z ∩ X ¼ ∅. For the
anti-Hermitian parts, in contrast, anticommutators are taken
with O; then, contributions from hAHZ ’s with Z ∩ X ¼ ∅
remain nonvanishing and affect the dynamics of O directly,
which indicates the breakdown of locality. To understand
the physical origin, we consider the dissipative dynamics
generated by a local Lindbladian L [65], which corresponds
to the dynamics obtained after taking the ensemble average
over all the possible measurement outcomes (i.e., quantum
trajectories). In the Heisenberg picture, such a dissipative
dynamics is described by ðd=dtÞOðtÞjt¼0 ¼ L½O� with

L½O� ¼
X
Z

�
i½hZ;O� þ

X
j

�
Lj
Z
†OLj

Z −
1

2
fLj

Z
†Lj

Z;Og
��

;

ð5Þ

where Lj
Z’s are local jump operators with support Z. In the

dynamics under continuous observation without quantum
jumps, the jump terms Lj

Z
†OLj

Z’s play no roles and the
effective non-Hermitian Hamiltonian is obtained as hHZ ¼ hZ
and hAHZ ¼ − 1

2

P
j L

j
Z
†Lj

Z. We note that the sum in Eq. (5)
can be restricted to Z with Z ∩ X ≠ ∅ since the quantum
jump term Lj

Z
†OLj

Z cancels 1
2
fLj

Z
†Lj

Z;Og for Z ∩ X ¼ ∅;
this means the preservation of the locality of the dynamics,
which results in the Lieb-Robinson bound in local Lindblad
equations [66–69]. In contrast, when one considers the
dynamics conditioned on measurement outcomes, such as
the non-Hermitian evolution, the above cancellation does not
occur in general and thus the Lieb-Robinson bound can be
violated. This holds true even when a finite number of
quantum jumps occur as long as a subensemble of quantum
trajectories is of interest for continuous observation [29].
The breakdown of the Lieb-Robinson bound demon-

strated above indicates that the correspondence between
quantum phase transitions and gap closing can break down
in non-Hermitian systems. In fact, in the non-Hermitian
case, vLR has no general upper bound and thus the length
scale vLR=Δ can diverge even without gap closing.
Nonorthogonality-induced singularity.—To gain further

insight into the breakdown of the correspondence between
quantum phase transitions and gap closing in non-
Hermitian systems, we consider the fidelity susceptibility
[57–59], which measures how rapidly the ground state
changes under the variation of the system’s parameter λ and
scales superextensively (i.e., grow more than extensively as
a function of the system size) at a quantum phase transition
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reflecting long-range correlations. We consider a non-
Hermitian local HamiltonianHðλÞ ¼ H0 þ λV, where V ≔P

i Vi with Vi’s being local, and let jψR
n ðλÞi and jψL

n ðλÞi
denote the right and left eigenstates, respectively, with the
(generally complex) eigenenergy EnðλÞ and the normaliza-
tion conditions hψR

n ðλÞjψR
n ðλÞi ¼ 1 and hψL

mðλÞjψR
n ðλÞi ¼

δm;n [70]. The right (left) eigenstates with different eigene-

nergies can be nonorthogonal, i.e., hψRðLÞ
m ðλÞjψRðLÞ

n ðλÞi ≠ 0
for m ≠ n, owing to non-Hermiticity. We assume that
the ground state jψR

0 ðλÞi is unique with an excitation
gap above it. Here, we define the ground state as the state
with the lowest real part of the eigenenergy and the energy
gap as minn≠0 jEnðλÞ − E0ðλÞj. We consider the fidelity
Fðλ; δλÞ ≔ jhψR

0 ðλÞjψR
0 ðλþ δλÞij for the right eigenstates

[71]. To the second order in δλ, we have [72]

Fðλ; δλÞ2 ¼ 1 − δλ2h∂λψ
R
0 ðλÞj∂λψ

R
0 ðλÞi: ð6Þ

Hence the fidelity susceptibility is given by

χFðλÞ ≔ lim
δλ→0

−2 lnFðλ; δλÞ
δλ2

¼ h∂λψ
R
0 ðλÞj∂λψ

R
0 ðλÞi: ð7Þ

Using the perturbation theory, we have

χFðλÞ ¼
X
m;n≠0

hψR
0 jV†jψL

mi
ðE0 − EmÞ�

hψL
n jVjψR

0 i
E0 − En

ðhψR
mjψR

n i − hψR
mjψR

0 ihψR
0 jψR

n iÞ: ð8Þ

If the Hamiltonian is Hermitian, owing to the orthogon-
ality of eigenstates, we have [57–59]

χFðλÞ ¼
X
n≠0

jhψnðλÞjVjψ0ðλÞij2
jE0ðλÞ − EnðλÞj2

; ð9Þ

which can be rewritten as

Z
∞

0

dττ
X
i;j

½hViðτÞVjð0Þi − hViðτÞihVjð0Þi�; ð10Þ

where ViðτÞ ≔ eHðλÞτVie−HðλÞτ. Here, the superscripts L
and R are omitted since the left and right eigenstates are
equivalent. When the excitation gap closes, the denomi-
nator of the right-hand side of Eq. (9) vanishes for some n
in the thermodynamic limit, which results in a super-
extensive scaling of χF and signals a quantum phase
transition. If the gap is open, in contrast, correlations are
short ranged and the summands in Eq. (10) decay rapidly
with distance, which is also guaranteed by the Lieb-
Robinson bound [84]; thus Eq. (10) cannot grow super-
extensively [58,59]. This gives an alternative explanation
for the correspondence between gap closing and a quantum
phase transition in Hermitian systems.

In non-Hermitian systems, however, the fidelity suscep-
tibility can exhibit a superextensive scaling even without
gap closing. This is because a large number of terms in the
double sum in Eq. (8) contribute to χF owing to the
nonorthogonality of eigenstates in sharp contrast with the
Hermitian case. In fact, Eq. (8) can be rewritten as [72]

Z
0

−∞
dτ0

Z
0

−∞
dτ
X
i;j

½hViðτ0Þ†VjðτÞi − hViðτ0Þ†ihVjðτÞi�:

ð11Þ

This form looks similar to Eq. (10) but can grow super-
extensively even if the energy gap is nonzero owing to the
long-range correlations arising from the breakdown of the
Lieb-Robinson bound. Here we emphasize that this super-
extensive scaling without gap closing contrasts sharply
with that found in a Hermitian model with a long-range
coupling [85]; in the latter case, the breakdown of the Lieb-
Robinson bound is caused by the long-range coupling. We
also note that the breakdown of the Lieb-Robinson bound
and the nonorthogonality of eigenstates are, in general,
neither necessary nor sufficient to each other.
Non-Hermitian toric-code model.—As an illustrative

example, we consider the following non-Hermitian exten-
sion of Kitaev’s toric-code model [60]:

HðβÞ ¼ −
X

v∈fvertexg
AvðβÞ −

X
p∈fplaquetteg

Bp; ð12Þ

where AvðβÞ ≔
Q

4
i¼1 σ

β
v;i and Bp ≔

Q
4
i¼1 σ

z
p;i are defined

on four edges around a vertex v and on a plaquette p of a
square lattice [Fig. 1(a)]. Here σxi , σ

y
i , σ

z
i are the Pauli

matrices on the edge i, and the non-Hermitian operator σβi is
defined as

σβi ≔ coshðβÞσxi þ i sinhðβÞσyi ¼
�

0 eβ

e−β 0

�
; ð13Þ

where β ≥ 0 parametrizes non-Hermiticity. This non-
Hermitian operator physically represents an asymmetric
spin flip. The original Hermitian model Hð0Þ is a proto-
typical solvable model that exhibits Z2 topological order
[60]. Since all the terms appearing in the non-Hermitian
Hamiltonian (12) commute with one another, the exact
solvability of the original model is maintained under the
non-Hermitian extension.
The original Hermitian model Hð0Þ exhibits fourfold

degenerate ground states below an excitation gap under the
periodic boundary conditions (i.e., on a torus) [60].
Importantly, the energy gap remains open in the presence
of non-Hermiticity β > 0 as we explain in the following.
Here HðβÞ is related to the original Hermitian model Hð0Þ
by a similarity transformation HðβÞ ¼ SðβÞHð0ÞSðβÞ−1,
where SðβÞ ≔ exp ½ðβ=2ÞPi σ

z
i �. Thus, regardless of β, the
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energy spectrum remains unchanged in comparison with
the Hermitian case, and there are fourfold degenerate
ground states below the energy gap. The right (left)
eigenstates with the eigenenergy En are jψR

n;kðβÞi ∝
SðβÞjψn;kð0Þi [hψL

n;kðβÞj ∝ hψn;kð0ÞjS−1ðβÞ], where k is
the index labeling degenerate eigenstates and the super-
scripts L, R are omitted for the Hermitian case (β ¼ 0). The
fourfold ground states are superposition states of spin
configurations fσzig in which down spins form closed
loops on the dual lattice. For β ¼ 0, such spin configura-
tions are superposed with an equal weight within each
topological sector characterized by the parities ðpx; pyÞ of
the numbers of noncontractible loops that wind around the
torus in the x and y directions. As β increases, the weight of
a configuration with a larger magnetization (i.e., a smaller
total length of loops) becomes exponentially larger. For
β → ∞, one of the ground states becomes fully polarized,
and the topological feature is entirely lost. In fact, a
topological phase transition takes place at β ¼ βc ≔
ð1=2Þ lnð ffiffiffi

2
p þ 1Þ ≃ 0.4407 [86,87], as shown below.

Topological phase transition.—A signature of topologi-
cal order is given by topological entanglement entropy
[88,89], which is a subleading constant term γ following the
area-law term αL in the entanglement entropy S for a
subregion of the ground state: S ¼ αL − γ þ oðL0Þ, where
L denotes the perimeter of the subregion and α is a

constant. In particular, the original Hermitian toric-code
model has γ ¼ ln 2 [90,91], which is a universal value for
Z2 topological order. Our non-Hermitian model possesses
γ ¼ ln 2 (γ ¼ 0) for β < βc (β > βc), which indicates a
topological (trivial) phase. To show this, we note that HðβÞ
shares the same ground states with the following Hermitian
model

H ¼ −
X
p

Bp −
X
v

Av þ
X
v

exp

�
−β

X
i∈v

σzi

�
; ð14Þ

with Av ≔ Avð0Þ. This Hermitian model was introduced in
Ref. [86] and γ is analytically obtained [92] (see also
Ref. [93]). Here, β physically represents an external
magnetic field for jβj ≪ 1 in the Hermitian model (14)
while β represents the degree of the asymmetric spin flips in
our non-Hermitian model (12). We note that gap closing at
the transition point was numerically demonstrated in the
former model [94], while the gap is constant regardless of β
in the latter one as similarity transformations do not alter
the spectrum.
Another important property of topological order is that

the projection of any local operator onto the ground-state
manifold is proportional to the identity: hψ0;k0 jOjψ0;ki ¼
cOδk0;k [64,95–100], which indicates that the degenerate
ground states cannot be distinguished by any local observ-
able. We examine this property for the total magnetiza-
tion M ≔

P
i σ

z
i . Figure 1(b) shows the difference in the

magnetization hMikðβÞ between different ground states,
where hOikðβÞ ≔ hψR

0;kðβÞjOjψR
0;kðβÞi [72]. For β < βc

(β > βc), the difference in hMikðβÞ tends to vanish
(becomes of the order of N) with an increase in N, which
indicates a topological (trivial) phase.
The magnetic susceptibility χkMðβÞ ≔ ðd=dβÞhMikðβÞ

exhibits a superextensive scaling at β ¼ βc [Fig. 1(c)]
[72]. For our model, this also indicates a superexten-
sive scaling of the fidelity susceptibility. In fact, using
the perturbation theory developed above with V ¼
ðd=dβÞHðβÞ and the fact that each excited state with a
nonzero contribution to the sum in Eq. (8) can be created by
acting local operators as σzi jψR

0;kðβÞi, we can show χkFðβÞ ¼
1
4
χkMðβÞ [72], where χkFðβÞ denotes the fidelity susceptibility

for jψR
0;kðβÞi [101]. Our model illustrates the super-

extensive scaling of the (fidelity) susceptibility due to
the nonorthogonality of eigenstates as the energy gap
remains nonvanishing for any β. We note that such a
transition cannot occur under similar transformations in
one-dimensional non-Hermitian systems [72].
Experimental situation.—The non-Hermitian model in

Eq. (12) can be simulated experimentally with ultracold
atoms. The dynamics by HðβÞ can be decomposed as

e−iHðβÞt ¼
�Y

p

eiBpt

�
SðβÞ

�Y
v

eiAvt

�
S−1ðβÞ: ð15Þ

(c)(b)

(a)

FIG. 1. Non-Hermitian toric-code model. (a) Spin-1=2 mag-
netic moments placed at the edges of a square lattice with N × N
vertices. (b) Difference (scaled by 2N) in the magnetization
hMikðβÞ between different ground states for N ¼ 8, 16, 24. Here
k ∈ fee; eo; oe; oog labels different topological sectors, where
the first (second) letter represents the parity of the number of
noncontractible loops of down spins on the dual lattice winding
around the torus in the x (y) direction. For β < βc (β > βc), the
difference in hMikðβÞ tends to vanish (becomes of the order of N)
with an increase in N, which suggests a topological (trivial)
phase. Moreover, the different curves cross at the transition point
β ¼ βc. (c) Magnetic susceptibility χkMðβÞ ¼ ðd=dβÞhMikðβÞ for
N ¼ 24, which exhibits a singularity at β ¼ βc.
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Schemes for simulating the unitary dynamics by Av or Bp

with ultracold atoms have been proposed in Refs. [102–
104], where the four-body interactions are simulated using
the controlled-NOT gates [105] which can be implemented
with Rydberg atoms [106–108] and electromagnetically
induced transparency [109–111]. Moreover, the nonunitary
dynamics SðβÞ and S−1ðβÞ can be implemented by post-
selection of events without spontaneous decay of one of the
spin components under continuous measurement [24,25].
All of these elements can be implemented, for example,
with 87Rb atoms [25,72,102].
Physically, the ground state of HðβÞ is a stationary state

of the conditional dynamics, and can be prepared by
starting with the ground state of the Hermitian counterpart
at zero temperature and then adiabatically ramping up β
[27]. A signature of the proposed transition can be detected
through a singularity in the magnetic susceptibility of the
ground state.
In summary, we have demonstrated that continuous

quantum phase transitions can occur without gap closing
in non-Hermitian quantum many-body systems. In such
a transition, the singularity of the fidelity susceptibility
arises from nonorthogonality of eigenstates. Possible
applications of our theory include adiabatic preparation
of a topological phase from a trivial phase [112] and an
improved efficiency of quantum annealing [113–115]. The
former can be realized by continuously changing the
Hamiltonian without gap closing in a finite time via a
process converse to that presented in this Letter—the
presence of a gap helps to suppress nonadiabatic excita-
tions. For the latter, the annealing time, which is inversely
proportional to the excitation gap by the adiabatic theorem,
may be short even for a large non-Hermitian system. In
Hermitian systems, by contrast, the energy gap is smaller
and hence the operation time is longer for a larger system
size. In both examples, a short operation time is also
important in practice, since the probability of successful
postselection under continuous measurement decays with
time. It is worthwhile to explore concrete applications in
these directions.
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