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The theoretical investigation of nonadiabatic processes is hampered by the complexity of the coupled
electron-nuclear dynamics beyond the Born-Oppenheimer approximation. Classically, the simulation of
such reactions is limited by the unfavorable scaling of the computational resources as a function of the
system size. While quantum computing exhibits proven quantum advantage for the simulation of real-time
dynamics, the study of quantum algorithms for the description of nonadiabatic phenomena is still
unexplored. In this Letter, we propose a quantum algorithm for the simulation of fast nonadiabatic chemical
processes together with an initialization scheme for quantum hardware calculations. In particular, we
introduce a first-quantization method for the time evolution of a wave packet on two coupled harmonic
potential energy surfaces (Marcus model). In our approach, the computational resources scale polynomially
in the system dimensions, opening up new avenues for the study of photophysical processes that are
classically intractable.
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Fast nonadiabatic processes are ubiquitous in science as
they are the foundation of photoinduced reactions spanning
the fields of biology [1–5], chemical engineering, and
material science [6,7]. From an atomistic standpoint, non-
adiabatic dynamics account for various interesting phe-
nomena. These include internal conversion and intersystem
crossings among Born-Oppenheimer (BO) potential energy
surfaces (PESs), the Jahn-Teller effect [8], and vibrational
assisted energy versus electron transfer [9–11].
In molecular systems, nonadiabatic processes occur

through the dynamical coupling between the electronic
and vibrational nuclear degrees of freedom. They are
characterized by the breakdown of the BO approximation
[12]. However, the simultaneous description of the dynam-
ics of the electronic and nuclear wave functions poses
severe limitations to the size of the systems that can be
simulated and to the accuracy of the solutions. From a
theoretical standpoint, relentless efforts have been made to
refine numerical methods to simulate nonadiabatic phe-
nomena beyond the analytically solvable Landau-Zener
model [13]. First numerical attempts evolved around a
semiclassical solution of the problem, e.g., within the
Wenzel-Kramers-Brillouin approximation [14], the
Ehrenfest dynamics [15], and trajectory surface hopping
[16]. These approaches have been extended to the study of
nonadiabatic effects in molecules and solid state systems
using first principle electronic structure approaches for
the BO PESs [10,17]. However, the use of classical and
quantum trajectories hampers a correct description of
quantum phenomena, such as wave packet branching at
avoided crossings, tunneling, and quantum coherence and
decoherence effects.

More naturally, the quantum dynamics of the nuclear
wave function can be represented as a wave packet,
especially in those regimes where dynamics cannot be
faithfully described by classical, semiclassical or quantum
trajectories [18]. To this end, the direct solution of the time-
dependent Schrödinger equation for the nuclear degrees of
freedom is required. However, due to the exponential
scaling of the Hilbert space, grid methods can only be
applied to low-dimensional model Hamiltonians while the
use of basis functions is usually limited to a few nuclear
degrees of freedom [19–21].
State-of-the-art approaches, like the multiconfiguration

time-dependent Hartree (MCTDH) method [22,23], can
routinely tackle up to ten dimensions [24,25], but not without
the use of approximations. In fact, as MCTDH relies on a
compact time-dependent basis set description, the integration
becomes less accurate as the propagation time increases, or
when the dynamics becomes chaotic. Further approxima-
tions have been introduced with the aim at improving the
efficiency of the method. These include nonorthogonal
Gaussian-based GMCTDH [26], local coherent state
approximation [27], and multiple spawning [28].
Quantum computers can in principle simulate real-time

quantum dynamics with polynomial complexity in memory
and execution time. Indeed, the simulation of quantum
physics with quantum computers has been proposed
theoretically decades ago by Feynman [29], and realized
experimentally in the last years for electronic structure
calculations [30–37]. Of particular interest is the possibility
to perform wave packet dynamics simulations in real-space
representation [38,39] with a quantum computer. Within
this framework, the space is discretized in a mesh of N
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points, separated by a distance Δx, in each dimension, that
requires order log2ðN Þ memory space in the quantum
register. The accuracy of the dynamics is not bounded by
any basis set limitation but rather by Δx. A general
procedure for the real-time propagation of a quantum state
on a quantum computer was first introduced by Kassal et al.
[40]. However, this work did not specify how to encode the
potential and kinetic energy terms of the time evolution
operator into a quantum circuit (i.e., into operations on the
qubits). Benenti and Strini [41] and later Somma [42]
presented a more detailed implementation in the case of a
single, one-dimensional, harmonic potential. Additionally,
a quantum circuit to implement a spin-boson model has
also been devised in Ref. [43]. In this case, the dynamical
bosonic degrees of freedom in the model are represented as
a wave packet evolving under the action of a harmonic
oscillator Hamiltonian, where the displacement operators
are coupled with the σz operator(s) of the spin(s). Finally, a
different approach consists of encoding the bosonic modes
directly in the hardware, exploiting the microwave reso-
nators available in the device [44,45].
In this Letter, we devise a quantum algorithm for the

simulation of nonadiabatic processes using a real-space
representation of the wave packet. While described in a
one-dimensional case, the method can easily be extended to
the study of the quantum dynamics of larger systems by
implementing additional spatial dimensions in the qubit
register. The scheme is applied to the investigation of the
dynamics of the one-dimensional Marcus model defined by
two coupled harmonic potential energy curves, for which
we observe the characteristic modulation of the charge
transfer rates when going from the normal to the so-called
inverted Marcus regime [46]. Finally, we discuss and
demonstrate the initialization of the Gaussian wave packet
on a quantum register.
The model.—The method aims at studying the dynamics

of a wave packet in several diabatic surfaces coupled
through nonlinear matrix elements in the first quantization
formalism. For the sake of simplicity here we restrict the
model to two one-dimensional diabatic curves. Note,
however, that the generalization to multiple dimensions
is straightforward.
The Hamiltonian of the system can then be written as

H ¼ K ⊗ 1þ V0 ⊗ j0ih0j þ V1 ⊗ j1ih1j þ C ⊗ σx; ð1Þ

where K ¼ 1=2mp2 is the kinetic energy operator of a
particle with mass m, while V0 and V1 are the potentials of
the first and the second diabatic curves, respectively, and
are defined by functions of the position x. Likewise, the
coupling operator C is described by an arbitrary function of
the position fðxÞ. An ancilla qubit qN , is entangled with the
spacial register and controls the nonadiabatic dynamics
across the diabatic curves. It is initialized in state j0i (j1i) if
the wave packet at time t ¼ 0 is placed on the first (second)

diabatic potential V0 (V1). For concreteness we specialize
to the Marcus model [46,47] which provides a simplified
description of the electron-transfer reaction rate driven
by collective outer and inner sphere coordinates [48]. In
this model, the potentials of Eq. (1) are defined by
Vi ¼ ω2

i =2mðx − x0i Þ2 þ ΔrG0
i . The two harmonic poten-

tials of the diabatic curves differ by an energy shift ΔrG0
i ,

frequency ωi, equilibrium position x0i , and model the
reactant and product states, respectively. We call offset
the difference ΔrG0

1 − ΔrG0
0. We use this setup in what

follows and show its representation in Fig. 1(a).
Resources scaling.—The position is encoded in the qubit

register as x ¼ j × Δx where j is an integer which binary
representation is encoded in the basis states of N ¼
log2ðN Þ qubits. Thus, in general, we require d log2ðN Þ
qubits to store the total wave function of the wave packet in
d dimensions. An ancillary register of size ⌈ log2ðκÞ⌉ is
needed to describe dynamics involving up to κ diabatic
potential energy surfaces. In the specific model considered
here, we only need one ancillary qubit for the propagation
of the wave packet in V0 and V1 coupled through the
nonadiabatic coupling operator C. Additionally, an extra
qubit register is required to implement C which size
depends linearly on N as well as on the shape of the
coupling as explained later and in the Supplemental
Material [49].
The time-evolution algorithm.—The very first step of the

dynamics resides in the initialization of the wave packet in
the quantum register. In the interest of clarity, this step will
be discussed in further detail at the end of this Letter and in
the Supplemental Material [49]. Then the wave packet is
propagated under the action of the real-time evolution
operator such that jΨðtÞi ¼ e−ði=ℏÞHtjΨðt ¼ 0Þi, using the
Lie-Trotter-Suzuki product formulas [53]. A quantum
circuit for implementing the time evolution under the
kinetic operator and harmonic potentials was presented
in Refs. [41,42] and is detailed in the Supplemental

(a)

(b)

FIG. 1. (a) Graphical representation of the Marcus model.
(b) Circuit for the time evolution of the wave packet. The K,
Vi, and C blocks represent the time evolution operators for the
kinetic, ith potential and coupling terms, respectively.
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Material [49]. The same logic can be extended to potentials
described by a polynomial function of the position. Note
that to account for negative values of the momentum, a shift
of pc ¼ ΔpN =2, where Δp ¼ 2π=NΔx, is applied plac-
ing the zero momentum value at the center of the Brillouin
zone. This choice implies the use of a centered quantum
Fourier transform (CQFT) operator (see Supplemental
Material for details [49]) to implement the switch from
the position to the momentum space. While the quantum
circuit for the kinetic part of the evolution can directly be
applied on the first N qubits, the potential parts must be
controlled by the state of the ancilla qubit qN , such that the
wave packet evolves under the action of e−iV0t=n and
e−iV1t=n when qN is in the j0i and j1i state, respectively
(here n is the number of Trotter steps).
One of the main methodological novelties of this work

resides in the encoding of the coupling operator which
acts as

e−iC⊗σxt=njxijqNi ¼ e−ifðxÞσxt=njxijqNi ð2Þ

and thus corresponds to a rotation of the ancilla qubit around
the x axis by an angle fðxÞt=n. The general approach
consists in precomputing a discretized function fðxÞ into
additional qubits using quantum arithmetic. While the
number of gates and the number of additional qubits scale
exponentiallywith the inverse desired accuracy for a general
function [54], the resources can be kept reasonably low by
approximating fðxÞ as a piecewise linear function [55]. In
the approach adopted here, the additional gates and ancilla
qubits scale linearly withN andwith the number of pieces in
the description of fðxÞ (see Supplemental Material [49] and
Refs. [56,57]). The generalization to multiple surfaces is
also possible keeping the scaling invariant as discussed in
the Supplemental Material [49]. Crucially, we observe that
accurate results can be obtained by including only a few
pieces in fðxÞ. A graphical representation of the quantum
circuit used to encode the dynamics is shown inFig. 1(b).We
expect the approximation of the coupling function to have a
larger impact on the accuracy of the dynamics when the
adiabaticity [58] is weak. This is the case when the offset
[Fig. 1(a)] approaches the reorganization energy (see the
Supplemental Material [49]).
Rates in the Marcus model.—The model parameters

are chosen to represent typical molecular dynamics [59]
and the simulation conditions were optimized to guarantee
the convergence of the results (see the Supplemental
Material [49]).
Therefore, we choose to discretize a space of length

L ¼ 20 using 8 qubits and we select a time step of 10 a.u.
The nonadiabatic coupling term, which in the reference
model is a Gaussian function, is approximated with a step
function giving the best trade-off between accuracy and
number of additional qubits that, in this case, amounts to 9
qubits. The time evolution is performed for a total time of

T ¼ 2000 a.u. and repeated for different values of the offset
between the two harmonic potential energy curves.
For the time being, we assume a Gaussian state prepa-

ration of the form (see below) [59]

ϕ0ðxÞ ¼
�

1

2πδ2

�
1=4

e−½ðx−x0Þ=2δ�2eip0ðx−x0Þ; ð3Þ

at the center of the potential curve at the right, V1, at x0 ¼
11.5 [see Fig. 1(a)] with δ ¼ 1=3. The initial momentum is
set to p0 ¼ 1. This choice is motivated from the possibility
to compare with the standard Marcus rate theory (see
Supplemental Material [49]). Note, however, that the
qualitative behavior of the dynamics is not affected by
the particular value of p0.
At each time step, the population fraction P0 in the

product well V0, is simply related to the expectation value
of the ancilla qubit as P0 ¼ ðhZqN i þ 1Þ=2 (where Z is the
Pauli operator σz). We run the dynamics for various offset
values and show the time evolution of corresponding P0 in
Fig. 2(a) (dots), using a classical emulation of the

(a)

(c)

(b)

FIG. 2. (a) Time evolution of P0 (see main text) obtained with
our algorithm in classical simulations (dots), with the exact
evolution with the reference coupling (full lines) and with the
exact evolution with the approximate coupling (dashed lines).
Curves at different offset values are displayed. (b) Linear fitting
of the ten first steps of the evolution to approximate the rate
constant. (c) The approximated rate constant k as a function of the
offset obtained with our algorithm (dots) and with the exact
evolution with the reference coupling (crosses). The Marcus rates
as calculated in the Supplemental Material [49] are shown in
dashed line for a qualitative comparison. The colored stickers
label the different charge transfer regions (A, normal regime; B, at
reorganization energy; and C, inverted region).
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corresponding quantum circuit. The exact evolution
obtained with the original, Gaussian, coupling (full lines)
and with its piecewise approximation (dashed lines) is also
reported demonstrating the correct implementation of the
algorithm (the small discrepancies are due to Trotter
errors). Moreover, these results highlight that the piecewise
linear approximation of the coupling function allows us to
recover the correct qualitative quantum dynamics. Note that
the accuracy of the results is controllable as it can be
systematically increased by improving the representation of
the coupling function, as well as by reducing the Trotter
step. We calculate the initial rate constant k for each offset
by taking the slope of the linear fit applied to the first ten
steps of the dynamics as shown in Fig. 2(b). The rates
obtained from the quantum dynamics (dots) and from
the exact dynamics with the exact, Gaussian, coupling
(crosses) are in good agreement and are summarized in
Fig. 2(c). As expected, the population transfer rate
increases with the offset in the normal Marcus regime,
reaching a maximum value when the offset is equal to the
reorganization energy before decreasing again in the
inverted region, thus recovering the expected volcano shape
predicted by Marcus theory [dashed line in Fig. 2(c)]. Note
that discrepancies between the Marcus rates, calculated for
a carefully chosen effective temperature (see Supplemental
Material [49]) and our rate estimates are expected, as we are
performing a closed-system dynamics.
Initial state preparation.—To complete our presentation,

we discuss an equally efficient initial state preparation
method. To this end, we rely on a more efficient variational
quantum eigensolver (VQE) [60–63] approach instead of
quantum arithmetic based methods [64,65]. As a proof of
concept we show how to prepare a wave packet defined as
the ground state of the (arbitrarily chosen) Hamiltonian
defined on a 3-qubit register (see Supplemental Material for
the detail [49]). The parametrized circuit comprises three
layers of Ry rotations intersected of three layers of CNOT

gates as shown in Fig. 3(d). In the Supplemental Material

[49] we study the convergence of the VQE in presence of
noise with the state-of-the-art optimizer and show that it
requires an important number of optimization steps as well
as error mitigation. Here, the circuit can be optimized in a
fully classical simulation of the VQE algorithm. We
employ this circuit on three qubits of the ibmq_london
5-qubit chip [see the hardware layout and the qubits
specifications in Figs. 3(b) and 3(c) respectively]. Since
in this example p0 ¼ 0 (i.e., the wave function is real) we
simply display the modulo squared of the resulting wave
function (obtained by measuring 8000 times in the position
basis) in Fig. 3(a). We also show the reference Gaussian
function demonstrating the initialization of the desired
wave packet in the quantum computer.
Conclusion.—We introduced a quantum algorithm to

simulate the propagation of a nuclear wave packet across κ
diabatic surfaces, featuring nonlinear couplings. The
degrees of freedom are expressed in the first quantization
formalism, as the position and momentum spaces are
discretized and encoded in a position quantum register.
Ancilla registers are used to encode the real-time evolution
of the population transfer between the κ surfaces, and to
realize the nonlinear coupling operators. The encoding of
the problem is efficient in term of qubit resources, which
scale logarithmically with the precision. This impressive
memory compression in storing the time-evolved wave
function, represented in a systematically converging basis
set of a real-space N -point grid, readily realizes an
exponential quantum advantage compared to classical
algorithms. As discussed, the proposed circuit to perform
the coupled-time evolution only requires a polynomially
scaling depth. We demonstrate this approach to simulate
the nonadiabatic dynamics of a wave packet evolving in a
Marcus model, consisting in two one-dimensional har-
monic potentials shifted in energy by a variable offset. This
minimal model requires a feasible number of qubits
(eighteen), so that the circuit can be classically emulated.
The simulated dynamics are in excellent agreement with

(a) (b)

(d)

(c)

FIG. 3. (a) Initialization of a wave packet in the ibmq_london 5-qubit device. The quantum circuit representing the discretized version
of the reference wave packet (black curve) is obtained from a classical simulation of the VQE algorithm. (b) Layout of the ibmq_london
quantum computer. The qubits in black are the ones used to prepare the wave packet. (c) Specifications of the qubit used to prepare the
wave packet. (d) Quantum circuit for the preparation of the wave packet. The values of the optimized angles are θ0 ¼ −0.3383,
θ1 ¼ −1.5502, θ2 ¼ 2.3662, θ3 ¼ −0.6743; θ4 ¼ −0.5438, θ5 ¼ −2.0766, θ6 ¼ −1.3717, θ7 ¼ 0.3663, θ8 ¼ −0.8286.
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the exact propagation and we are able to observe the
expected slowing down of the population transfer in the so-
called inverted region. However, the circuit depth required
to observe these dynamics greatly exceeds those currently
feasible due to the limited coherence time of present
quantum hardware. Therefore, we limit the hardware
demonstration to the first part of the algorithm, i.e., the
Gaussian wave packet initialization, on an IBM Q device.
As far as concerning the quantum resources (number of

qubits), our algorithm can straightforwardly be extended to
represent polynomial potential energy surfaces in d dimen-
sions with a scaling O(d log2ðN Þ). Hence, a quantum
computer with ∼165 qubits would allow for the study of
molecular systems characterized by up to ten vibrational
modes. Reaching the limits of classical simulations [66,67],
this approach will pave the way toward a better under-
standing of femtochemistry processes, such as internal
conversion and intersystem crossings, exciton formation,
and charge separation.
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