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Self-testing is a procedure for characterizing quantum resources with the minimal level of trust. Up to
now it has been used as a device-independent certification tool for particular quantum measurements,
channels, and pure entangled states. In this work we introduce the concept of self-testing more general
entanglement structures. More precisely, we present the first self-tests of an entangled subspace—the five-
qubit code and the toric code. We show that all quantum states maximally violating a suitably chosen Bell
inequality must belong to the corresponding code subspace, which remarkably includes also mixed states.
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Introduction.—Authentically quantum effects such as
entanglement and measurement incompatibility play a key
role in the development of various quantum information
protocols. In this context, verifying that a device or an
algorithm indeed uses quantum resources is a very impor-
tant task. There are many frameworks for such kinds of
verification, in a broad sense known as testing of quantum
properties [1]. In a standard quantum property testing
scenario a user, usually called verifier, aims to certify that
their devices, commonly named provers, exploit some
quantum resource.
The strongest form of verification is device independent

[2–4] in which no assumptions are made on the
devices; they are simply treated as black boxes. A device-
independent certification performed by a completely
classical verifier is also known as self-testing [5,6]. In
such a scenario the only way to verify the “quantumness”
of the provers is to interact with them, for example by
asking them some questions by means of classical
communication channels and receiving the answers
through the same channels (see Fig. 1). Any information
about the underlying physical system is then inferred by the
verifier from the observed correlations between those
answers.
In a self-testing scenario, a central concept is that of

Bell nonlocality [7]. Observing nonlocal behaviors is

essential to certify several interesting properties of quantum
systems, such as the exact form of a quantum state [8–10],
measurement [11,12], or a channel [13,14], all this up
to certain well-understood equivalences. However, self-
testing has so far been deemed as a procedure tailored to a
single quantum state and it has been a highly nontrivial
question if it can be used to certify less specific quantum
properties.
Here, we address this problem and introduce the defi-

nition of self-testing of an entangled subspace. Although

FIG. 1. A model of self testing. A classical verifier V aims to
certify a particular quantum property of the resource shared by
noncommunicating provers Pi. The verifier sends different
classical inputs xi to the provers and they respond with classical
outputs ai. If nonlocal, correlations between the outputs allow the
verifier to make nontrivial conclusions about that quantum
property.
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Bell inequalities maximally violated by more than a single
pure state are already known (e.g., Refs. [15,16]), we show
for the first time that this kind of violation can be exploited
to certify that a quantum state belongs to such a subspace.
Hence, we present a relaxed definition of self-testing that is
not able to distinguish between any mixture of the vectors
belonging to the self-tested subspace. We present a first
application of such a relaxed self-testing by constructing
Bell inequalities whose maximal violation is attained
by states belonging to some genuinely entangled sub-
spaces, which are subspaces of multipartite Hilbert spaces
consisting of only genuinely entangled states (see, e.g.,
[17]). As a paradigmatic example, we focus on those used
in stabilizer error correcting codes [18], such as the five-
qubit code [19,20] and the toric code [21], the latter
allowing us to show that self-testing of subspaces is
possible for systems composed of any number of particles.
Interestingly, while still being based on the stabilizer
formalism, our Bell inequalities are inequivalent to those
presented in [22,23].
Preliminaries.—We begin with some preliminaries.
The Bell scenario.—Following the scenario depicted in

Fig. 1, let us consider N spatially separated provers Pi
sharing a quantum state ρP that acts on some finite-
dimensional Hilbert space HP ¼ HP1

⊗ � � � ⊗ HPN
and

a verifier V asking them questions xi. Upon receiving the
question xi the prover Pi measures a quantum observable
AðiÞ
xi on their share of ρP and returns V the outcome of that

measurement ai. Here, we consider the simplest scenario in
which all provers measure binary observables whose out-
comes are labeled ai ¼ �1. If this procedure is repeated
sufficiently many times, the verifier can estimate the vector
P of expectation values

hAði1Þ
xi1

� � �AðikÞ
xik

i ¼ Tr½ðAði1Þ
xi1

⊗ � � � ⊗ AðikÞ
xik

ÞρP�; ð1Þ

with i1 < i2 < � � � < ik, k ¼ 1;…; N, and ij ¼ 1;…; N.
Below we refer to P as behavior or simply correlations.
The key ingredient making device-independent verifica-

tion possible is that the correlations observed by the verifier
exhibit quantum nonlocality [7]. The phenomenon of
nonlocality consists of the existence of quantum correla-
tions that cannot be reproduced by any local-realistic
theory, or, phrasing alternatively, that violate Bell inequal-
ities which bound the strength of correlations achievable in
such theories. The most general form of a multipartite Bell
inequality is

IN ≔
XN

k¼1

X

1≤i1<i2<���<ik≤N
xi1

;…;xiN
¼0;1

αi1;…;ik
xi1 ;…;xik

hAði1Þ
xi1

� � �AðikÞ
xik

i ≤ βc; ð2Þ

where βc is the local bound, that is, the maximal value of IN
over all local-realistic correlations.

Genuinely entangled subspaces.—Consider a bipartition
of N provers into two disjoint and nonempty groups G and
G0 and a pure multipartite state jψi ∈ HP. We call it
genuinely entangled if for any such bipartition GjG0 it
cannot be written as a tensor product of pure states
corresponding to G and G0. We then call a subspace of
HP genuinely entangled if it consists of only genuinely
multipartite entangled states (cf. Ref. [17]).
Stabilizer codes.—The N-fold tensor products of the

Pauli operators fX; Z; Y; 1g with the overall factor �1 or
�i forms the Pauli group PN under matrix multiplication.
A stabilizer SN is any Abelian subgroup of PN , and the
stabilizer coding space CN consists of all vectors jψi such
that Sijψi ¼ jψi for any Si ∈ SN. Hence, CN is the
eigenspace of SN corresponding to the eigenvalue þ1.
Its dimension depends on the number of independent
generators Si of the stabilizer or, equivalently, the number
of elements of SN : if SN has 2N−k elements for some
0 ≤ k < N, then dimCN ¼ 2k. A stabilizer subspace of
dimension 2k might be used to encode k logical qubits; the
corresponding vectors belonging to CN are called quantum
code words (for more details see Refs. [18,24,25]).
In the particular case of jSN j ¼ 2N , the subgroup stabi-

lizes a unique state, known as the stabilizer state. Any
stabilizer state is equivalent to a certain graph state under
local unitary operations (see, e.g., Ref. [26]), and self-testing
methods for graph states are already known [9,27]. Our aim
here is to go beyond the k ¼ 1 case and provide device-
independent certification methods for higher-dimensional
subspaces CN . In order to exploit nonlocality as the resource
for certification, a natural starting point are those stabilizers
that generate genuinely entangled subspaces. In
Supplemental Material A [28] we also provide a simple
sufficient criterion to ascertain that a given stabilizer gives
rise to a genuinely entangled subspace.
Self-testing of entangled subspaces.—Let us start off by

providing the definition of self-testing of an entangled
subspace. To this aim, let HP be, as before, the prover’s
Hilbert space. Let then HP0 be a Hilbert space with
dimension equal to that of the entangled subspace we
want to self-test whereas HP00 some auxiliary Hilbert space
such that dimHP ¼ dimHP0 dimHP00 . Notice that for the
examples considered below HP0 ¼ ðC2Þ⊗N.
Let then jϕiPE be a purification of the mixed state

ρP shared by the provers to a larger Hilbert space
HPE ¼ HP ⊗ HE, where HE represents all potential
degrees of freedom which the provers do not have access to.
Definition: The behavior P self-tests the entangled sub-

space spanned by the set of entangled states fjψ iigki¼1

if for any pure state jϕiPE ∈ HPE compatible with P
through (1) one can deduce that (i) every local Hilbert
space has the form HPi

¼ HP0
i
⊗ HP00

i
; (ii) there exists a

local unitary transformation UP ¼ U1 ⊗ � � � ⊗ UN acting
on HP such that
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UP ⊗ 1EðjϕiPEÞ ¼
X

i

cijψ iiP0 ⊗ jξiiP00E; ð3Þ

for some normalized states jξii ∈ HP00 ⊗ HE and some
nonnegative numbers ci ≥ 0 such that

P
i c

2
i ¼ 1.

Note that, if the set fjψ iigki¼1 spans a genuinely
entangled subspace, then the state on the right-hand side
of Eq. (3) is genuinely multipartite entangled with respect
to the partition HP1

jHP2
j � � � jHPN

[33]. This implies that
the above self-testing statement can also be used as a
certificate of genuine multipartite entanglement for the
measured state. Note also that, analogously to the case of
state self-testing, a subspace can be certified from the
observed correlations P up to certain equivalences such as
local unitary transformations or extra degrees of freedom
described byHP00 andHE. Interestingly, here we identify an
additional degree of freedom encoded in the scalars ci. The
freedom of varying the values of those scalars implies that
self-testing of an entangled subspace can also be under-
stood as self-testing of all mixed states supported on that
subspace and giving rise to the correlations P.
In what follows, we show how to prove a self-testing

statement according to the above definition based solely on
the fact that the observed behavior maximally violates a
certain multipartite Bell inequality. As target subspaces we
choose those used in quantum error correction. As quantum
code words are highly entangled states, it is natural to
expect them to display nonlocal correlations [34,35].
Notice that for our purposes it is not enough to simply
observe nonlocal correlations, but it is crucial to prove that
states belonging to the subspaces of interest maximally
violate a Bell inequality and such an inequality has to be
carefully tailored to the considered code space. A couple of
methods based on the stabilizer formalism that does the job
was recently put forward in Refs. [22,23]. Here, we provide
an alternative construction, inspired by Ref. [27], that
allows us to make a straightforward connection to the
self-testing proof. Before moving to the presentation of the
results, it is important to emphasize that, as many prior
works on self-testing, we assume that the source produces
identical and independently distributed copies of the
state ρP.
The five-qubit code.—The five-qubit code is the smallest

possible code that corrects single-qubit errors [19,20] on a
logical qubit. It is also a stabilizer code, generated by the
following four operators acting on ðC2Þ⊗5:

S1 ¼ Xð1ÞZð2ÞZð3ÞXð4Þ; S2 ¼ Xð2ÞZð3ÞZð4ÞXð5Þ;

S3 ¼ Xð1ÞXð3ÞZð4ÞZð5Þ; S4 ¼ Zð1ÞXð2ÞXð4ÞZð5Þ; ð4Þ

where XðiÞ; ZðiÞ are the Pauli matrices acting on qubit i. One
can check that the four operators above are independent and
hence the code space, denoted C5, is two dimensional, and,
importantly, it is genuinely entangled (see Supplemental
Material A [28] for a proof).

In order to prove a self-testing statement for this sub-
space, we introduce a Bell inequality that is maxi-
mally violated by any pure state from C5. To do so we
build the inequality directly from the generators (4). For

the first party we assign Xð1Þ → ðAð1Þ
0 þ Að1Þ

1 Þ= ffiffiffi
2

p
and

Zð1Þ → ðAð1Þ
0 − Að1Þ

1 Þ= ffiffiffi
2

p
, while for the remaining parties

we simply replace XðiÞ → AðiÞ
0 and ZðiÞ → AðiÞ

1 , where AðiÞ
j

are arbitrary binary observables (of unspecified but finite
dimension) that are to be measured in a Bell experiment.
Let then S̃i denote operators obtained from (4) by making
the above substitutions.
Let us also define the following Bell inequality:

I5 ¼ hðAð1Þ
0 þ Að1Þ

1 ÞAð2Þ
1 Að3Þ

1 Að4Þ
0 i þ hAð2Þ

0 Að3Þ
1 Að4Þ

1 Að5Þ
0 i

þ hðAð1Þ
0 þ Að1Þ

1 ÞAð3Þ
0 Að4Þ

1 Að5Þ
1 i

þ 2hðAð1Þ
0 − Að1Þ

1 ÞAð2Þ
0 Að4Þ

0 Að5Þ
1 i ≤ 5; ð5Þ

whose local bound was directly computed by optimizing I5
over deterministic strategies for which AðiÞ

xi ¼ �1.
The above inequality is obtained by choosing a suitable
linear combination of the expectation values of S̃i,
indeed it can be checked that I5 ¼

ffiffiffi
2

p ðhS̃1i þ hS̃3iÞþ
hS̃2i þ 2

ffiffiffi
2

p hS̃4i.
The maximal quantum value of I5 can also be straight-

forwardly determined and it amounts to βq ¼ 4
ffiffiffi
2

p þ 1. To
see that such value can be achieved by any state fromC5, let
us notice that by making the following measurement
choices

Að1Þ
0 ¼ X þ Zffiffiffi

2
p ; Að1Þ

1 ¼ X − Zffiffiffi
2

p ; ð6Þ

for the first party and AðiÞ
0 ¼ X and AðiÞ

1 ¼ Z (i ¼ 2;…; 5)
for the remaining ones, I5 becomes the expectation value
of the Bell operator: B0

5 ¼
ffiffiffi
2

p ðS1 þ S2 þ 2S4Þ þ S3. It
follows that its maximal eigenvalue is 4

ffiffiffi
2

p þ 1 and it is
precisely associated with the eigenspace stabilized by the
four generators Si given in Eq. (4).
To prove that there does not exist a quantum state and

observables giving rise to a higher violation of I5 it is
enough to show that the following decomposition

βq1 − B5 ¼
1ffiffiffi
2

p ð1 − S̃1Þ2 þ
1

2
ð1 − S̃2Þ2

þ 1ffiffiffi
2

p ð1 − S̃3Þ2 þ
ffiffiffi
2

p
ð1 − S̃4Þ2; ð7Þ

holds true, which implies that the eigenvalues of B5 do not
exceed βq for any choice of local observables AðiÞ

xi .
The maximal violation of inequality (5) allows one to

make the following self-testing statement.
Fact 1: Any behavior achieving the maximal quantum

violation of I5 self-tests the entangled subspace C5.
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Proof.—Here, we provide a sketch of the proof for
illustrative purposes, deferring the details to Supplemental
Material B [28]. Consider a state jϕiPE ∈ HPE and observ-
ables AðiÞ

xi acting on HPi
that maximally violate inequality

(5). From the decomposition (7) one deduces that

ðS̃i ⊗ 1EÞjϕiPE ¼ jϕiPE ð8Þ

for i ¼ 1;…; 4, which can be used to prove the existence
of local unitary operations Ui acting on HPi

such
that US̃iU† ¼ Si ⊗ 1P00 for i ¼ 1;…; 4, where U ¼
U1 ⊗ � � � ⊗ U5 and the operators Si are given in
Eq. (4). This allows us to rewrite Eq. (8) as ðSi ⊗
1P00EÞjψiPE ¼ jψiPE with jψiPE ¼ ðU ⊗ 1EÞjϕiPE. As
we show in Supplemental Material B [28], the most general
state satisfying all these four conditions is exactly
cjψ1i ⊗ jξ1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p
jψ2i ⊗ jξ2i, where 0 ≤ c ≤ 1,

jψ1i, and jψ2i are two orthogonal five-qubit states spanning
C5 whereas jξ1i and jξ2i are some auxiliary quantum states
from HP00 ⊗ HE.
The toric code.—The toric code is a paradigmatic example

of topological quantum error correction codes [21]. It allows
one to store two logical qubits in four multiqubit pure states
of arbitrarily large number of particles. The logical qubits can
be associated with ground states of a 1=2-spin model on a
torus, that is, a two-dimensional spin square lattice with
periodic boundary conditions in which qubits are associated
with the edges (see Fig. 2).
The toric code is also a stabilizer code with two types of

stabilizing operators: the vertex and plaquette operators

Sv ¼
Y

i∈v
XðiÞ; Sp ¼

Y

i∈p
ZðiÞ: ð9Þ

For each of the generators Sv and Sp, the product runs
over operators acting on qubits sharing the same vertex

v or plaquette p, respectively (see Fig. 2). The above
generators are not all independent, since they satisfyQ

v Sv ¼
Q

p Sp ¼ 1. By simple counting argument, it
follows that the set of states stabilized by these operators
spans a four-dimensional subspace, denoted Ctor

N , for any
choice of the lattice size L.
The Bell inequality maximally violated by any mixed

state supported in Ctor
N can be derived in a manner

analogous to the previous example. For an arbitrarily
chosen edge j, we substitute the Pauli operators
XðjÞ; ZðjÞ acting on the corresponding qubit with the

combinations ðAðjÞ
0 � AðjÞ

1 Þ= ffiffiffi
2

p
, while for the other qubits

we simply have XðiÞ; ZðiÞ → AðiÞ
0 ; AðiÞ

1 (i ≠ j). By applying
this substitution to Sv and Sp we obtain operators S̃v and S̃p
from which we obtain the following Bell inequality

ItorN ≔
X

v

hS̃vi þ
X

p

hS̃pi ≤ βtorc ðNÞ: ð10Þ

It is not difficult to realize that its classical bound
βtorc ðNÞ amounts to βtorc ðNÞ ¼ 2

ffiffiffi
2

p þ jpj − 2þ jvj − 2 ¼
N − 2

ffiffiffi
2

p ð ffiffiffi
2

p
− 1Þ. Moreover, as proven in the

Supplemental Material B [28], the quantum bound is
βtorq ðNÞ ¼ 4þ jpj þ jvj − 4 ¼ N > βtorc ðNÞ. It follows that
any pure state from Ctor

N achieves it, meaning that Ctor
N is an

entangled subspace; in fact, in Supplemental Material A
[28] we prove it to be genuinely entangled. More impor-
tantly, as we prove in Supplemental Material B [28], the
following self-testing statement can be made for it.
Fact 1: Any N-partite behavior P achieving the maxi-

mal quantum violation of ItorN self-tests the entangled
subspace Ctor

N .
Noise robustness.—In practice, finite sampling

effects and experimental errors render the maximal vio-
lation of a Bell inequality impossible to reach. For this
reason, it is important to be able to make certification
statements when the violation is not maximal. In
Supplemental Material C [28] we provide a framework
allowing us to tackle this problem and use it to obtain a
numerical indication of how robust our self-testing state-
ment is for the five-qubit code. In particular, Fig. 3 shows
how the numerically estimated subspace extractability,
which we define to quantify how close is the self-tested
subspace to the desired one, scales as a function of the
observed Bell violation.
Geometrical considerations.—A Bell inequality is gen-

erally believed to be useful for state self-testing only if its
maximal violation can be associated with a single quantum
state and to a single point in the set of quantum correlations
[16]. Remarkably, subspace self-testing allows one to make
nontrivial statements for Bell inequalities maximally vio-
lated by more than one correlation point. As we show in
Supplemental Material D [28], the subspace of quantum
correlations maximally violating inequalities (5) and (10) is

FIG. 2. The toric code. Each edge of the lattice represents a
qubit. Stabilizing operators can be divided in two groups: those
associated with each lattice vertex v with X acting on every qubit
associated with an edge attached to the given vertex, or associated
with each plaquette p of the lattice with Z acting on each qubit
represented by an edge surrounding the plaquette.
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spanned by two and three linearly independent correlation
vectors, respectively. Our results on subspace self-testing
can thus be seen as complementary to the weaker form of
self-testing presented in [36]. While in [36] the multiple
correlations points associated with the self-testing
statement are achieved by varying the measurement oper-
ators on the same state, we instead obtain a similar
phenomenon by performing the same measurements on
different quantum states.
Discussion.—We introduce the notion of self-testing of

entangled subspaces—a device-independent method of
certification that an entangled state belongs to a certain
subspace of dimension at least two. By exploiting the
formalism of stabilizer error correction codes we present
two examples of multipartite Bell inequalities whose
maximal quantum violation serves the purpose, that is,
enables self-testing of entangled subspaces. We also
provide a framework to study the robustness of subspace
self-testing when the experimental imperfections are taken
into account and use it to investigate how robust is the self-
testing statement for the five-qubit code. On a more
fundamental level, our Bell inequalities can be used to
identify flat structures in the boundary of the sets of
quantum correlations.
Our work opens a plethora of possibilities for future

research. By proposing a clear strategy to derive a Bell
inequality and by being based on the broadly used stabilizer
formalism, we believe that our self-testing technique has
the potential to be generalized to other genuinely entangled
stabilizer subspaces. From a broader point of view, it would
be very interesting to understand which conditions a
stabilizer subspace has to satisfy in order to be suitable
for self-testing (see [37] for recent progress concerning this
point). We also believe that the presented techniques are a
promising tool to quantify the average fidelity of quantum
codeword preparations, thus opening the way to the device-
independent certification of quantum error correction

codes. Characterizing in more detail the robustness proper-
ties of our self-testing methods would also be essential
for that.
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