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The quantum approximate optimization algorithm (QAOA) employs variational states generated by a
parameterized quantum circuit to maximize the expected value of a Hamiltonian encoding a classical cost
function. Whether or not the QAOA can outperform classical algorithms in some tasks is an actively
debated question. Our work exposes fundamental limitations of the QAOA resulting from the symmetry
and the locality of variational states. A surprising consequence of our results is that the classical Goemans-
Williamson algorithm outperforms the QAOA for certain instances of MaxCut, at any constant level. To
overcome these limitations, we propose a nonlocal version of the QAOA and give numerical evidence that
it significantly outperforms the standard QAOA for frustrated Ising models.
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Variational quantum optimization (VQO) has recently
received significant attention as a candidate application of
near-term quantum processors. The basic proposal is appeal-
ingly simple: The output state of a parameterized quantum
circuit is used as a variational wave function to minimize the
expected energy of a given Hamiltonian [1]. Depending on
the envisioned application, the Hamiltonian may govern
electronic interactions in a molecule or material of interest [2]
or encode a classical cost function whose minimum is to be
approximated [3]. Rotation angles that define individual
gates in the state preparation circuit serve as variational
parameters. These parameters are adjusted via a classical
feedback loop that aims to minimize the expected energy.

The central question common to all VQO proposals is
whether the chosen variational class of states is expressive
enough to provide a good ground state approximation. Let
us point out two factors that can limit the expressive power
of VQO. First, the state preparation quantum circuit must
have a small depth to enable reliable implementation on
near-term noisy devices lacking error correction. This
means that highly entangled states such as the ground
state of Kitaev’s toric code [4] may be out of scope for near-
term VQO using gate-based devices and low-depth circuits
[5,6]. Second, the number of variational parameters in the
state preparation circuit must be small enough to enable
efficient energy minimization. While this is not a serious
concern for proof-of-principle experiments with a handful
of qubits, it is anticipated that large-scale VQO with an
extensive number of variational parameters may give rise to
intractable optimization problems, for example, due to the
barren plateau (vanishing gradient) effect [7].

In this Letter, we elaborate on the limitations of
VQO and establish formal no-go results for the quantum
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approximate optimization algorithm (QAOA) [3]. Recall
that the QAOA aims to approximate the maximum
of a classical cost function C(x) that depends on
n binary variables, x = (x{,...,x,). The cost function is
encoded into an n-qubit diagonal Hamiltonian C =
> vefo.p C(x)[x)(x|. The QAOA variationally maximizes
the expected energy of C over n-qubit quantum states of the
form [3]

)4
w(B.r)) = [ [ e BeraCl+), (1)
a=1

where 3, and y, are variational parameters, |[4+") is the
tensor product of n single-qubit states |+)=(|0)+|1))/v/2,
and B = 27=1 X is the transverse magnetic field operator.
The integer p, called the QAOA Ilevel, controls the
expressive power of the variational ansatz. Finally, the
QAOA outputs a bit string x obtained by preparing
the optimal variational state |y/(f,y)) and measuring each
qubit in the standard basis. The expected value of C(x)
coincides with the variational energy (w(f3,7)|Clw(B,7)).
The performance of the QAOA is commonly quantified by
an approximation ratio defined as the ratio between the
maximum variational energy and the maximum value of the
cost function Cy,, = max, C(x).

A paradigmatic test case for the QAOA is the maximum
cut (MaxCut) problem [3]. Suppose G = (V, E) is a graph
with a set of n vertices V labeled by integers j =1, ...,n
and a set of edges E. Given an n-bit string x, let cut(x) be
the set of edges (j,k) € E such that x; # x;. The cost
function to be maximized is the cut size, C(x) = |cut(x)|.
The corresponding r-qubit Hamiltonian is
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C= % > (1-2;z). (2)

(j.k)EE

Here, Z; is the Pauli Z operator applied to a qubit j, and I is
the identity. The state preparation circuit defined in Eq. (1)
has depth ~pD, where D is the maximum vertex degree of
the graph G and p is the QAOA level [8]. To keep the
circuit depth and the number of variational parameters
small, below, we focus on the regime when p and D are
constants or slowly growing functions of n.

Our first result is an upper bound on the maximum
variational energy attained by level-p states. Namely, we
show that for any constant D > 3 and all large enough n
there exists a degree-D graph G with n vertices such that

D-1
3
+—p (3)

(w(B.nIClw(B.y)) 5

<
Cmax

N

for any 8,y € R” as long as p < (1/3log,n—4)(D+1)7".
This result severely limits the performance of the QAOA
with any constant level p independent of n. Indeed, the
right-hand side of Eq. (3) is approximately 5/6 ~ 0.833 for
large vertex degree D. For comparison, the best-known
classical algorithm for MaxCut due to Goemans and
Williamson [9] achieves the approximation ratio ~0.878
on an arbitrary graph. Thus, the QAOA with a constant level
p cannot outperform classical algorithms. We note that
upper bounds on the QAOA approximation ratio were
previously known only for p = 1 [3]. We refer to Ref. [10]
for numerical studies of the QAOA applied to MaxCut.

Similar concerns about limitations of the QAOA have
previously been voiced by Hastings [11], who showed
analytically that certain local classical algorithms match
the performance of the level-1 QAOA for Ising-like cost
functions with multispin interactions. Hastings also
gave numerical evidence for the same phenomenon for
MaxCut with p = 1 and argued that this should extend to
p>1][11].

QAOA states possess a certain symmetry that plays a
crucial role in our analysis. Namely, the state |y (f,7)) is
invariant under a global spin flip:

X&'y (B,r)) = lw(B.7)).

Indeed, the Hamiltonians B and C commute with the
symmetry operator X®", while the initial state |[+") is a
+1 eigenvector of X®". More generally, let us say that an
n-qubit state |y) is Z, symmetric if it is a +1 eigenvector of
X®". Our proof of Eq. (3) combines two observations:
(i) The symmetry forces good variational states to be highly
entangled, and (ii) low-depth circuits are not capable of
preparing highly entangled states.

To elaborate on the role of the Z, symmetry, suppose
x € {0, 1}" is an optimal cut such that C,,,, = C(x). Let X
be the bitwise negation of x. Note that C(x) = C(x).

Although the state |x) has no entanglement whatsoever, its
Z,-symmetric version (|x)+|%))/+/2 is a highly entangled
state, locally equivalent to the n-qubit Greenberger-Horne-
Zeilinger (GHZ) state (]0") + |1"))/+/2, which cannot be
prepared by a low-depth circuit [5].

The fact that symmetry may prevent one from preparing
ground states of certain Hamiltonians by low-depth circuits
is well known in the theory of topological quantum order
under the name symmetry protection [12—14]. The bound
Eq. (3) asserts that the Hamiltonian C exhibits a strong
form of symmetry protection that extends to all states with
energy density above a certain constant threshold.

We shall now argue that for a suitable family of graphs G
all good variational states are qualitatively similar to the
GHZ state. Specifically, the results of Refs. [15-17] show
that for any constant D > 3 there exists an infinite family of
bipartite degree-D graphs G such that

C(x) = [cut(x)| > hmin {|x

n—|xl} (4)

for any x € {0, 1}", where h is a constant satisfying
D
hzo-VD-1 ()

and |x| is the Hamming weight of x. Such graphs, known
as Ramanujan expander graphs, maximize the spectral gap
of their adjacency matrices among all D-regular graphs.
Random D-regular bipartite graphs are known to approach
the bound Eq. (5) with high probability [18].

Let G be a bipartite graph as above and x,, € {0, 1}" be
an optimal solution of the MaxCut problem. For a bipartite
graph, Cp.x = C(xop) = |E|. Moreover, the optimal sol-
ution X, is unique up to the bitwise negation and

C(x) + Clxop @ x) = |E| (6)

for all x € {0, 1}". Here, @ denotes the bitwise XOR. Set
€ = h/6 and consider a level-p QAOA state such that

(w(B.7)ICly(B.7)) = |E| - en. (7)

Let x be arandom n-bit string sampled from the distribution
P(x) = |{x|y(B,7))|>. Markov’s inequality and Eq. (7)
show that C(x) > |E| — 2en with a probability of at least
1/2. From Eq. (6), one infers that C(x,y @ x) < 2en witha
probability of at least 1/2. Let dist(x,y) = |x @ y| be the
Hamming distance between bit strings x and y. Combining
Eq. (4) and the bound C(xopl @ x) < 2en, one gets

2
min {dist(xopy, X), dist(Top, X)} < % - g 8)

with a probability of at least 1/2. This shows that the state
lw (B, 7)) has a non-negligible weight on bit strings close to
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Xope and on those close to X, Here, closeness means being
within a Hamming distance of at most n/3.

Finally, we employ a fascinating result by Eldar and
Harrow stated as Corollary 43 in Ref. [19]. It asserts that the
output distribution of a low-depth circuit cannot assign a
non-negligible weight to subsets of bit strings that are far
apart in Hamming distance. Namely, suppose |y) is an
n-qubit state that can be prepared starting from a product
state by a depth-d quantum circuit composed of one- and
two-qubit gates. The state [yr) does not have to be symmetric
in any sense. Define a distribution P(x) = |{x|w)|*. Given a
subset S C {0, 1}, let P(S) = > . P(x). Reference [19]
showed that for any subsets S, S’ C {0, 1}" one has

4n1/223d/2
min {P(S), P(S")}"

dist(S, §') < 9)

Here, dist(S, ') = min,cg ming g dist(x,y) is the mini-
mum number of bit flips required to get from S to §'.
Choose S and §' as the sets of n-bit strings x such that
dist(xop, x) <n/3 and dist(xgy, x) < n/3, respectively.
Then dist(S, S") = n/3. Choose |y) = |y (B,7)). The Z,
symmetry of QAOA states gives P(x) = P(X) and, thus,
P(S) = P(S’"). We have already shown that P(SU §’) >
1/2 [see Eq. (8)]; that is, P(S) = P(S’) > 1/4. Combining
this and Eq. (9), one arrives at 1 < 48n~'/223¢/2 This gives a
lower bound on the depth d required to approximate the
maximum value C,,,, = |E| within a ratio

Here, we recalled that ¢ = h/6 and |E| = Dn/2 and used
Eq. (5). In Appendix A in Supplemental Material [20], we
show that the level-p QAOA circuithas depthd < p(D + 1)
whenever G is a bipartite degree-D graph. Thus, 1 <
48n=1/2234/2 implies p > (1/3log, n —4)(D + 1)~'. This
concludes the proof of Eq. (3).

The above arguments provide an upper bound on the
variational energy for any Z,-symmetric state generated by
a low-depth circuit. One may ask if stronger bounds can be
derived by making use of the special structure of the QAOA
ansatz. Indeed, so far this structure has been used only in
establishing the Z, symmetry and expressing the circuit
depth d in terms of the degree D and the level p. A notable
special feature of the QAOA ansatz is its geometric
locality—the entangling operators e”7«C include inter-
actions only between nearest-neighbor qubits with respect
to the underlying graph G.

To elucidate implications of the geometric locality,
consider a toy model known as the ring of disagrees
[3]. It describes the MaxCut problem on the cycle graph.
The latter has a set of vertices V = 2Z,, = {0,1,...,n — 1}.
An edge is drawn between any pair of vertices j, k € Z,

such that j = k + 1modn. Quite recently, Ref. [21] proved
that the optimal approximation ratio achieved by the level-
p QAOA for the ring of disagrees is bounded above by
(2p+1)/(2p +2) for all p and conjectured that this
bound is tight. Here, we prove a version of this conjecture
for arbitrary Z,-symmetric geometrically local variational
states. To quantify the geometric locality, let dist(/, k) be
the distance between qubits j and k with respect to the cycle
graph Z,,. Define the R neighborhood of a qubit j as the set
{i € Z,:dist(i, j) < R}. A unitary U acting on n qubits
located at vertices of the cycle graph has range R if the
operator UTZ ;U has support on the R neighborhood of j for
any qubit j. For example, the level-p QAOA circuit
associated with the ring of disagrees has range R = p.
A unitary U is said to be Z, symmetric if UX®" = X®"U.
Let C be the MaxCut Hamiltonian Eq. (2) associated with
the cycle graph Z,,, where n is even. Note that such a graph
has a maximum cut of size n. We show that

L, o 2R+1/2
—(+"UTCU+) < R (10)
for any Z,-symmetric range-R unitary U with R < n/4.
This bound is tight whenever n is an even multiple of
2R + 1. Since one can always round n to the nearest even
multiple of 2R + 1, the bound Eq. (10) is tight for all n up
to corrections O(1/n), assuming that R = O(1).

We shall now prove the upper bound Eq. (10). Let X be
the operator that applies Pauli X to every second qubit, and
let W = XU. Note that W is a Z,-symmetric circuit with
range R. Since X(Z;Z;,1)X = —Z,Z;, for any qubit j, the
MaxCut Hamiltonian Eq. (2) satisfies C + XCX = nl.
Taking the expected value of this identity on the state
U|+"), one infers that Eq. (10) holds whenever

2R+1/2 1
2R+1  22R+1)’

1
Z<+”|WTCW|+"> > 1 (11)

Thus, it suffices to prove that Eq. (11) holds for any
Z,-symmetric range-R circuit W. For each j, k € Z, define

(+"|\WHI = Z,Z ) W[+").

N[ =

€jix =
We claim that
€k = 1/2 if dist(j, k) > 2R. (12)

Indeed, (+"|W'Z;W|+") =0 for any qubit j, since the
states W|+") and Z;W|+") are eigenvectors of X®" with
eigenvalues 1 and —1. Such eigenvectors have to be
orthogonal. From dist(j,k)>2R, one infers that W'Z,W
and W'Z, W have disjoint support. Thus,
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(a) Approximation ratios achieved by the level-1 RQAOA (blue) and the Goemans-Williamson (GW) algorithm [9] (red) for 15

instances of the Ising cost function with random £1 couplings defined on the 2D toric grid of size 16 x 16. In case (b), the Ising
Hamiltonian also includes random +1 external fields. The RQAOA threshold value is n, = 20. We found that the standard level-1
QAOA achieves approximation ratios below 1/2 for all considered instances (not shown). The GW algorithm was implemented with
n = 256 rounding attempts, and the best found solution was selected. The exact maximum energy was computed using integer linear

programming.

(+"|\W'Z,Z,W|+") "(WIZW)(WIZ W)+

(+
(+"WIZ,W|+") - ("W Z, W |+")
0.

This proves Eq. (12).

Suppose one prepares the state W|+") and measures a
pair of qubits j < k in the standard basis. Then ¢ is the
probability that the measured values on qubits j and k
disagree. If qubits j and k disagree, at least one pair of
qubits (i, i + 1) located in the interval [j, k] must disagree.
The probability of the latter event is €;;, ;. Thus, the union
bound gives

k=1

€k < Zei,m- (13)
i=j

Setk = j+ 2R + 1. Then ¢;, = 1/2 by Eq. (12). Take the

expected value of Eq. (13) with respect to random uniform
j € Z,. This gives

1S2R—|—1
2 n

2R +1
S e = (7| W CW|47),
iez, n

proving Eq. (11). As argued above, Eq. (11) is equivalent to
Eq. (10). In Appendix B in Supplemental Material [20],
we show that the bound Eq. (10) is tight by constructing a
Z,-symmetric range-R circuit U such that U|+") is a tensor
product of GHZ-like states on consecutive segments of
2R + 1 qubits. This circuit is shown to saturate the upper
bound Eq. (10).

Motivated by the limitations established above, we
propose a nonlocal modification of QAOA which we call
the recursive quantum approximate optimization algorithm

(RQAOA). This is a VQO-type algorithm based on the
variational ansatz Eq. (1) with a constant level p. The key
new feature of the RQAOA is a variable elimination step.
The latter transforms a cost function with n variables to one
with n — 1 variables by examining correlations present in
the optimal variational state and identifying strongly
correlated clusters of variables. To describe this formally,
suppose the cost function C(x) describes the Ising model
on a graph G = (V, E) with n vertices. The corresponding
n-qubit Hamiltonian is

C - Z Jj,ijZk
(j.k)EE

(14)

Here, J; ; are arbitrary real coefficients. As before, our goal
is to maximize C(x) = (x|C|x). The RQAOA consists of
the following steps.

First, maximize the expected value (w(,y)|Clw(f,7))
over 5,y € RP. For every edge (j,k) € E, compute the
mean value M = (w(B.7)\Z,Zulw (B 7).

Next, find an edge (i, j) € E with the largest magnitude
of M;; (breaking ties arbitrarily). The corresponding
variables Z; and Z; are correlated if M;; > 0 and anti-
correlated if M; ; < 0. Impose a parity constraint

(15)

and substitute it into the cost function C to eliminate the
variable j. For example, a term J;,Z;Z; with k & {i, j}
gets mapped to J; ;sgn(M; ;)Z;Z;. The term J; ;Z,Z; gets
mapped to a constant energy shift J; ;sgn(M; ;). All other
terms remain unchanged. This yields a new Ising cost
function C’ that depends on n — 1 variables. The underlying
interaction graph G’ with n — 1 vertices is obtained from G

ZJ — Sgn(Mi’j)Zl'
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by contracting the edge (i, j) [22]. The maximum energy of
C’ coincides with the maximum energy of C over the subset
of assignments satisfying the constraint Eq. (15).

Next, call the RQAOA recursively to maximize the cost
function C’'. Each recursion step eliminates one variable
from the cost function. The recursion stops when the
number of variables reaches some specified threshold value
n. < n. The remaining instance of the problem with n,
variables is then solved by a purely classical algorithm (for
example, by a brute force method). Thus, the value of n,
controls how the workload is distributed between quantum
and classical computers.

Finally, assign a value to all eliminated variables Z; by
backtracking the steps of the algorithm and applying the
parity constraints Eq. (15) imposed at each step. This
results in a tentative solution x € {0, 1}" of the original
problem with n variables.

Importantly, the limitations established above for the
QAOA with a constant level p on bounded degree graphs do
not apply to its recursive version. Indeed, each variable
elimination step performed by the RQAOA results in a
contraction of some edge in the graph. The latter tends to
increase the maximum vertex degree, thereby increasing the
circuit depth of level- p variational states. In other words, the
RQAOA overcomes the locality restriction of the standard
QAOA without increasing the number of variational param-
eters that have to be optimized at each step.

We report a numerical comparison between the level-1
RQAOA and the Goemans-Williamson algorithm [9] for
the Ising cost function Eq. (14) with random coefficients
Jjx = =1. Two graphs are considered: (a) the 2D grid and
(b) the 2D grid with one extra vertex connected to all grid
points. The latter is equivalent to the 2D Ising model with
random +1 external fields. As shown in Ref. [23], the
problem of maximizing the energy C(x) admits an efficient
algorithm in case (a), while case (b) is NP hard. To
compute the mean values (w(f,7)|Z;Z|y(B.y)), we used
a version of the algorithm by Wang et al. [24], as detailed in
Appendix C in Supplemental Material [20]. Figure 1 shows
approximation ratios achieved by each algorithm for 15
problem instances with the grid size 16 x 16. It can be seen
that the RQAOA outperforms the Goemans-Williamson
algorithm for all except for one instance. We found that the
standard level-1 QAOA achieves an approximation ratio
below 1/2 for all considered instances. Finally, we show
analytically that the RQAOA with the level p = 1 finds the
optimal solution for the ring of disagrees model; see
Appendix D in Supplemental Material [20]. Meanwhile,
the standard level-p QAOA achieves an approximation
ratio of at most (2p +1)/(2p +2) for this model [21].
This proves that in certain cases the RQAOA is strictly
more powerful than the QAOA.
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Note added.—Recently, analogous limitations were estab-
lished for random regular graphs by exploiting the locality
and spatial uniformity of the QAOA [25,26]. We focus on
Z, symmetry and locality, and our statements also apply to
nonuniform local algorithms.
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