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Effective and efficient forecasting relies on identification of the relevant information contained in past
observations—the predictive features—and isolating it from the rest. When the future of a process bears a
strong dependence on its behavior far into the past, there are many such features to store, necessitating
complex models with extensive memories. Here, we highlight a family of stochastic processes whose
minimal classical models must devote unboundedly many bits to tracking the past. For this family, we
identify quantum models of equal accuracy that can store all relevant information within a single two-
dimensional quantum system (qubit). This represents the ultimate limit of quantum compression and
highlights an immense practical advantage of quantum technologies for the forecasting and simulation of
complex systems.

DOI: 10.1103/PhysRevLett.125.260501

Predicting the future based on past events is a corner-
stone of life. From meteorologists forecasting the weather,
through investors trading on stock markets, to a predator
chasing its prey, the ability to identify causes and accurately
anticipate effects is central to survival and success. To carry
out these essential tasks, models must be formulated and
information about past observations must be stored within
memory.
In this context, processes with long historical dependence

typically require models that store extensive information
about past observations. This is because a model must
ascribe each set of past causes that can give rise to distinct
future effects to distinct configurations in its memory. When
there are many such causes, the memory must support many
configurations. Classically, the number of configurations is
synonymous with the dimension of the memory—tracking a
process with causes reaching far into the past typically
requires a large memory with many dimensions.
In contrast, the number of configurations a quantum

memory can take is separate from its dimension. This has
led to quantum encodings with reduced memory dimension
for several Markovian processes—where each output is
conditional only on its immediate predecessor [1–4].
Here, we demonstrate that not only do these quantum
advantages persist for non-Markovian processes, but that
they become even more pronounced in this regime. We
consider a family of such processes where the memory
dimension required of a faithful classical model diverges

with precision and identify corresponding quantum models
that compress all configurations into two dimensions. This
allows for all relevant history to be stored in a single two-
state quantum system (qubit), evincing an extreme quantum
advantage that scales without bound. Moreover, our protocol
requires only a single probe qubit to extract the future
statistics. This turns a problem from the converse scenario—
that tracking a finite quantum system can require infinite
classical resources [5–8]—into a useful tool.
This complements recent advances at the interface of

complexity and quantum science, where it has been found
that quantum models can drastically reduce the amount of
past information—as measured by information entropy—
that must be stored in memory to replicate the future
behavior of a process [1,9–15]. Our Letter indicates that
this advantage (along with its quantitative scaling divergen-
ces) also persists for the memory dimension. Crucially, this
brings practical, verifiable, and significant quantum memory
advantages within the reach of present technologies.
Framework and tools.—A stochastic process X can be

characterized by an observation sequence X
↔
, detailing what

happens and when [16]. We can partition this sequence in
two: a past x⃖ that describes everything that has happened up
to the present, and a future x⃗ describing everything yet to
come (we use upper case to denote random variables and
lower case for their corresponding variates). The goal of
causal modeling is to use the past (and only the past) to
simulate the future [1,17–19]. Specifically, a causal model
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M stores in its memory states m ∈ M determined from an
encoding function of the past f∶fx⃖g → M, such that it can
produce futures X⃗ according to P½X⃗jm ¼ fðx⃖Þ� ¼ PðX⃗jx⃖Þ.
Two widely used metrics for a causal model’s memory

efficiency are [17] CM ≔ −
P

m∈M PðmÞ log2½PðmÞ� and
DM ≔ log2½dimðMÞ�, where PðmÞ ¼ P

x⃖∈m Pðx⃖Þ is the
probability of finding the memory in statem in the process’
steady state. These measures, respectively, characterize the
information stored by the memory and the dimension of
the substrate into which it is encoded. Operationally, they
represent the memory required to implement the model in
an asymptotic ensemble (CM) or single-shot (DM) setting.

When X
↔
is a bi-infinite, stationary sequence with discrete

events, the ε-machine of computational mechanics [17–19]
is the provably most efficient classical causal model accord-
ing to both these metrics. The corresponding minimal
measures are labeled as Cμ and Dμ and referred to as the
statistical and topological complexity, respectively [17].
The key elements of these models are causal states s ∈ S,
a set of equivalence classes defined such that, if two pasts
have identical future predictions, the (causal state) memory
encoding function fε∶fx⃖g → S assigns them to the same
state: fεðx⃖Þ ¼ fεðx⃖0Þ ⇔ PðX⃗jx⃖Þ ¼ PðX⃗jx⃖0Þ. Causal states
are in essence a state of knowledge, minimally encapsulating
all information relevant to future prediction that can be
obtained from observations of the past; they closely mirror
the belief states of reinforcement learning [20,21]. They
represent the minimal (classical) sufficient statistic of the
past with respect to the future [18]. The ε-machine describes
a stochastic transition structure between causal states, with
transitions accompanied by the output of a symbol; this can
be represented by a hidden Markov model [18]. These
complexity measures have been applied to study structure in
systems from a variety of fields, including neuroscience
[22,23], biology [24,25], economics [26], geophysics [27],
meteorology [28], and condensed matter physics [29].
These optimality results do not hold within the quantum

domain [9]. For quantum causal models [1–4,9–15,30–37],
each past x⃖ is assigned a quantum state jfðx⃖Þi to be
stored in the model memory. The efficiency metrics
become Cq ≔ −Tr½ρ log2ðρÞ� and Dq ≔ log2½rankðρÞ�,
where ρ ¼ P

x⃖ Pðx⃖Þjfðx⃖Þihfðx⃖Þj. We refer to these as
the quantum statistical memory and quantum topological
memory of a model, respectively; they inherit the same
operational significance in the quantum regime as the
corresponding classical quantities [9]. As with classical
causal models, these quantum memory states encode
information from the past of the process and must not
contain any information that can only be obtained from its
future; the full description of a quantum model then
includes the means by which its memory is probed to
produce a sample of the future statistics given the observed
past, which must similarly be drawn from P½X⃗jm ¼
jfðx⃖Þi� ¼ PðX⃗jx⃖Þ. For definiteness, we remark that, while

the model and its associated memory are quantum, the data
(i.e., the modeled stochastic process) remain classical.
Current state-of-the-art constructions for quantum causal

models [3] assign memory states directly from causal states
s → jsi, though the optimal quantum encoding strategy is
presently unknown for general processes [1,34]—we there-
fore do not designate these quantum metrics as complexity
measures. Nevertheless, it has been shown that, in general,
there exists a quantum model with Cq ≤ Cμ [9]. This
quantum advantage exploits the possibility to store quan-
tum information in nonorthogonal states [38], enabling
efficient isolation of predictive features. It has recently
been shown that quantum models can also exhibit
Dq < Dμ [1–4].
Dual Poisson processes.—Consider a system that under-

goes a series of Poissonian decay events through one of two
channels with rates γ1 and γ2. After each event, the decay
channel for the next emission is chosen randomly, with
probability p or p̄ ¼ 1 − p, respectively. The choice of
channel is hidden internally in the system, such that an
external observer can only see when the decay events occur.
Specifically, we consider an observer operating on discrete
time steps Δt, recording a 1 when an event occurs and 0
otherwise. We call the resultant stochastic process a dual
Poisson process, and itmanifests as a series of 1s separated by
strings of 0s. Note that the probabilistic choice of channel
occurs only after events (1s) and remains unchanged across
nonevents (0s). The probability that a contiguous string of 0s
(bookended by 1s) is of at least length n is given by the so-
called survival probability ΦðnÞ,

ΦðnÞ ¼ pΓn
1 þ p̄Γn

2; ð1Þ

where Γj ¼ expð−γjΔtÞ. We shall now look at the scaling of
thememorymetrics of causalmodels for suchprocesses as the
temporal precision Δt is refined—making the process
increasingly non-Markovian.With arbitraryΦðnÞ, this frame-
work describes general renewal processes [39].
Optimal classical causal model.—Since the observer is

unaware of the choice of decay channel, the information
they must track reflects their confidence in the chosen rate
based on the time since last emission. Let fn⃖g denote
clusterings of all pasts with the same number n of 0s since
the last 1, and fn⃗g denote clusters of futures with the same
number n of 0s until the next 1. Then, a causal model of a
dual Poisson process must track the number of 0s (n⃖) since
the last 1 in order to predict how many more 0s (n⃗) until
the next 1 appears; the direction of the arrows signifies that
this is information about observations either in the past or
in the future. The relevant conditional future distribution is
given by

PðN⃗ ¼ n⃗jn⃖Þ ¼ Φðn⃖þ n⃗Þ −Φðn⃖þ n⃗þ 1Þ
Φðn⃖Þ : ð2Þ
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When γ1 ≠ γ2 and p ≠ 0, 1 this conditional distribution is
different for every n⃖. We can thus treat n⃖ as being
synonymous with the causal states; the causal states are
in effect counting the number of 0s since the last event. The
ε-machine of the process is shown in Fig. 1.
From previous studies on the computational mechanics

of renewal processes [40,41], we can immediately identify
that Cμ andDμ are infinite in the continuum limit (Δt → 0Þ,
as storing n⃖ involves tracking an infinity of states with non-
negligible occupation probabilities; we can understand
this as arising from the increasing lengths of strings of 0s
as time steps are refined. Moreover, since Φðn⃖Þ remains
nonzero for all n⃖, Dμ is also infinite at any level of
discretization. Note that a continuous-variable classical
memory must analogously support a distinguishable
mode for each n⃖ and so will exhibit similar divergences.
However, the differences between conditional probabilities
become increasingly small for states at large n⃖Δt, and the
probability of reaching such states, is very small. We hence
introduce a truncated form of the model, where after
sufficiently large n⃖Δt the causal states are all merged together
(see Supplemental Material [42]), and study the associated
complexities C̃μ and D̃μ of this model. Their scaling with
increasing precision (i.e., decreasingΔt) for γ1 ¼ 12, γ2 ¼ 1,
and p ¼ 0.9 is shown in Fig. 2. Note that the qualitative

features of this plot are typical for any nonextremal choice of
parameters (i.e., P ≠ 0, 1 and γ1 ≠ γ2).
Unbounded quantum compression advantage.—We now

show that this scaling divergence is a purely classical
phenomenon and need not persist in the quantum regime.
By constructing quantum causal models of such processes
for which the memory metrics are finite at any level of
precision, we show unbounded quantum advantages in
compression, forming our main result.
Main result. A quantum causal model with Cq ≤ 1 and

Dq ≤ 1 exists for any dual Poisson process at any level of
precision Δt.
Our models work by encoding the memory into one

qubit and using another to probe it (Fig. 3). At each time
step, a constant unitary interaction U acts on both the
memory and probe qubits, after which measurement (in the
computational basis fj0i; j1ig) of the probe qubit generates
the corresponding output for the time step [3,14,31]. (The
same U is applied at every time step, which depends only
on the parameters defining the particular dual Poisson
process and the desired precision, and is not conditioned on
any external counter.) We define a set of quantum memory
states fjςðnÞig corresponding to having observed n 0s
since the last 1. We require

UjςðnÞij0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φðnþ 1Þ
ΦðnÞ

s
jςðnþ 1Þij0i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Φðnþ 1Þ
ΦðnÞ

s
jςð0Þij1i; ð3Þ

where the first subspace corresponds to the memory and
the second the probe (reset to j0i at each time step). To
understand this criterion, consider the required action of
U—for any quantum memory state jςðnÞi, it must take the
current memory state and blank probe state (left-hand side)
to a state such that (i) the measurement statistics of the
probe in the computational basis are correct according
to Eq. (2) (setting n⃖ ¼ n, with n⃗ ¼ 0 and the cumulative

FIG. 1. Tracking dual Poisson processes. Causal models of dual
Poisson processes track the confidence in chosen emission rate
based on the time since last emission; the number of possible
states diverges with refinement of time steps. Since all states have
different future distributions they each correspond to different
causal states—the model depicted is the ε-machine. The notation
xjT indicates that with probability T the marked transition occurs
while symbol x is output.

FIG. 2. Scaling of memory metrics with precision. Both
classical memory metrics diverge with increasing precision,
wherein the interval Δt is refined. In contrast, the quantum
metrics remain finite, evincing an unbounded advantage: Cq
tends to a bounded value, while Dq remains constant. Plot shown
for γ1 ¼ 12, γ2 ¼ 1, and p ¼ 0.9 (the qualitative features are
typical for any nonextremal parameter choice).

FIG. 3. Two-qubit quantum model. Our quantum models need
only two qubits—one for the memory, and one to probe it. At
each time step, a blank probe (red) is interacted with the memory
qubit (blue) according to U and subsequently measured (green).
The measurement outcome forms the output of the process,
and the memory automatically updates conditional on this out-
come (the conditional dependence is not explicitly depicted here).
The dashed boxes delineate the repeated fundamental building
block of the model, representing each time step.
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n⃗ > 0 to obtain the probability for 1 and 0, respectively);
and (ii) the quantum memory state is updated correctly
according to this outcome (jςðnþ 1Þi for nonevents 0,
and reset to jςð0Þi for events 1). It can be seen
that this is satisfied by the right-hand side of the condition,
with the weightings corresponding to the probability
(amplitudes) of the desired measurement statistics. Note
that, in principle, we have the freedom to add a phase factor
to the second term on the right-hand side; we do not include
this here as it is not necessary for our construction.
In the Supplemental Material [42], we show that for any

dual Poisson process the condition Eq. (3) is satisfied by the
set of quantum memory states given by

jςðnÞi¼
ffiffiffiffiffiffiffiffi
pΓn

1

p þ ig
ffiffiffiffiffiffiffiffi
p̄Γn

2

p
ffiffiffiffiffiffiffiffiffiffi
ΦðnÞp j0iþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−g2Þp̄Γn

2

p
ffiffiffiffiffiffiffiffiffiffi
ΦðnÞp j1i; ð4Þ

where g is defined in the Supplemental Material, along with
an explicit expression for U. Crucially, Eq. (4) evinces that
the memory states can be encoded into a single qubit,
guaranteeing Cq ≤ 1 and Dq ≤ 1. Moreover, since the
process is generically not memoryless, and a binary system
is the smallest possible memory, we can conclude that
our model is (single-shot) minimal and that Dq ¼ 1 is the
quantum topological complexity. In Fig. 2 we compare the
scaling of the quantum memory metrics with those of
the minimal classical model. We thus observe the
unbounded scaling of the quantum compression advantage
in both ensemble and single-shot settings.
Relationship to other works.—We have shown that

quantum dimensional advantages in causal modeling of
classical stochastic processes can grow without bound.
The highly cross-disciplinary nature of this work neces-
sarily invites comparison with a range of prior and current
research directions, and remarks on these relationships are
in order. Foremost, a number of previous studies have
shown unbounded quantum memory advantages in ensem-
ble settings [12–15], where the advantage is contingent on
an asymptotically large set of simulators acting in parallel
with a shared memory. A scaling advantage in terms of
dimension has previously been found for a Markovian
process [1], albeit at the cost of an unboundedly large
alphabet (and hence output register). Thus, while theoreti-
cally demonstrating the scaling of quantum memory
advantages, these advantages are not presently experimen-
tally feasible due to the need to either implement many
simulators at once or assign an ancilla of unbounded
dimension (e.g., a continuous-variable mode) for the output
register. In contrast, our proposal requires only two qubits
to demonstrate its advantage (and the associated scaling)
and so is eminently more practical to implement; moreover,
our proposal is the smallest possible that could ever
demonstrate such an advantage, in the sense that if either
the memory or output register of a model has fewer than

two states then the process it simulates is trivial and/or
memoryless.
The modeling of quantum dynamics with classical

simulators is well studied; several works approaching this
problem from a variety of angles show that it typically
requires unbounded classical resources to track the dynam-
ics of a finite quantum system, due to the continuous nature
of the Hilbert space it occupies [5–8]. Here, by reversing
the scenario, we show that this problem can turn into
an asset—the very properties of (even simple) quantum
systems that make them appear complex to classical
systems can turn complex classical problems into simple
quantum ones.
Despite a degeneracy in nomenclature, our framework is

distinct from quantum causal models [45] in the sense of
causal inference [46]. In such works, the goal is to identify
causal relationships between variables, e.g., to determine if
one variable causes the value of another or if both stem
from a common cause; on the other hand, we start from the
proposition that the past causes the future and seek to
identify what the information in the past observations is
that gives rise to (i.e., causes) the future statistics. Finally,
we also note a resemblance between our discretized models
using an ancillary system to interrogate a memory qubit and
recent work on models of quantum clocks [47].
Concluding remarks.—The single-shot setting of our

advantage is ideal for current and near-future quantum
technologies. Crucially, such dimensional advantages can
be more readily verified than corresponding entropic
advantages; one need only count the dimension of the
memory system, rather than perform full tomography [4].
The small-scale quantum systems required for our proposal
are highly amenable to present experimental capabilities;
they could, for instance, be implemented with current
2-qubit ion trap experiments, where sequential interac-
tion-measurement-feedback cycles have been realized [48].
Moreover, photonic setups have already been used to
experimentally realize the compression of a process with
three causal states into a two-dimensional quantum
memory [4], as well as quantum stochastic simulation over
multiple time steps [49]; together, these form the two main
aspects required for a proof-of-principle demonstration of
our proposal. Consideration of resources in the experimen-
tally more straightforward single-shot regime has garnered
notable interest in other contexts [50–60].
While we have shown an unbounded dimensional scaling

advantage for the dual Poisson process specifically, there are
many other examples that can be found. For example, the
behavior of a broader range of renewal processes can be
captured by generalizing Eq. (4) to have different (poten-
tially complex) amplitudes and include additional states.
With the target of compressed simulation of given stochastic
processes in mind, our findings motivate future work on
developing the mapping of processes with large numbers of
causal states into exact and near-exact quantum models with
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low-dimensional memory—for renewal processes and
beyond. A further direction would be to extend these
techniques for scaling advantages to other continuous
parameters such as spatial coordinates [12] or more abstract
settings such as continuous belief spaces [20].
Interestingly, while both our quantum model and the

optimal classical model provide an approximation of
the fully continuous process for finite time steps Δt, in
the quantum case a decrease in time step size is not
accompanied by an increase in memory size. The quantum
model memory size Dq is entirely independent of the time
step and does not exhibit the classical scaling of memory
with precision. This indicates that the limiting factor in the
accuracy of quantum models of such processes is not the
available memory, but the accuracy with which it can be
addressed. Our results already in some sense indicate a
robustness of the quantum advantage: errors in the imple-
mentation of the quantum model can be accounted for by
limiting the precision Δt to not exceed that achievable by
the experiment—and the problem of noise exceeding
the difference in future statistics for large n⃖ is mitigated
by the truncated process. Ultimately, while it would not be
possible to witness the scaling difference all the way up to
the continuum limit, it can still be shown up to the best
achievable precision. We note that, while errors present in
current quantum technologies would not prevent us from
demonstrating that our quantum models can achieve better
precision than any classical model at a fixed number of (qu)
bits, the possibility to address larger numbers of classical
bits with smaller errors than qubits on quantum computers
would presently allow classical computers to achieve a
higher level of precision. Nevertheless, our results suggest
compression tasks as a potential future route for demon-
strating absolute superiority of quantum technologies over
classical devices and as a critical application of these
incipient devices.
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