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Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their
physical origin is quite different: the former phase arises due to rugged classical energy landscape, while
the latter is a quantum-interference effect. Here, we study quantum dynamics of an isolated 1D spin glass
under application of a transverse field. At high energy densities, the system is ergodic, relaxing via a
resonance avalanche mechanism, that is also responsible for the destruction of MBL in nonglassy systems
with power-law interactions. At low energy densities, the interaction-induced fields obtain a power-law soft
gap, making the resonance avalanche mechanism inefficient. This leads to the persistence of the spin-glass
order, as demonstrated by resonance analysis and by numerical studies. A small fraction of resonant spins
forms a thermalizing system with long-range entanglement, making this regime distinct from the
conventional MBL. The model considered can be realized in systems of trapped ions, opening the door
to investigating slow quantum dynamics induced by glassiness.
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Introduction.—Spin glasses (SG) and many-body
localization (MBL) are two broad classes of systems that
break ergodicity. A SG is a system where frustration
resulting from random interactions and fields cause spins
to “freeze” at low temperatures, leading to an “ordered”
phase without long-range order [1–3]. Characteristic
extremely slow dynamics in SG originates from a large
number of metastable low-energy states separated by large
energy barriers.
While SG models are essentially classical, the emer-

gence of freezing in quantum systems is being actively
studied theoretically and experimentally in the context
of MBL [4,5]. Although, as with SG, randomness is
essential, the fundamental mechanism behind MBL is
quantum interference, rather than frustration.
Another major discrepancy between SG and MBL

immediately meets the eye: MBL exists in short-range
interacting models in d ¼ 1-dimensional systems [4,5];
whereas SG require long-range interactions or more than
d ¼ 2 dimensions. Moreover, analytical results for SG exist
predominantly for models with infinite-range interactions
[1]. There are of course some exceptions, notably, a
d ¼ 1-dimensional long-range interacting spin glass model
introduced by Kotliar, Anderson, and Stein [6].
The question regarding similarities and differences in

dynamics between spin glasses and many-body localized
phases remains largely open. Recently, eigenstates [7–9] and
dynamics [10,11] of infinite-range spin glasses have been
studied. Such models are difficult to realize (see, however,
Ref. [12]); here, instead our focus will be on experimentally
relevant systems with power-law decaying interactions.
We propose to bridge the gap between spin glasses and

MBL by studying the Kotliar-Anderson-Stein SGmodel [6]

with a quantum transverse field. This model has the
advantage of being experimentally realizable. In particular,
1D disordered systems with long-range interactions have
been recently studied with trapped ions [13]. We investigate
quench dynamics of this model at high and low (but
nonzero) energy densities ϵ, finding that the onset of
glassiness dramatically modifies dynamics at low ϵ.
Throughout, we will focus on the properties of isolated
systems; note that the dynamics of glasses in the presence
of external bath has been investigated extensively [14].
Recent works [15–19] argued that MBL is impossible in

the thermodynamic limit in 1D for sufficiently long-ranged
power-law interactions, attributing numerical signatures of
MBL reported in Refs. [20–22] to finite-size effects. We
argue that the novel aspect—frustration and glassiness—of
our model compared to those studied in Refs. [15–19]
enables ergodicity breaking in the quantum model at low
energy density. It is worth noting that Ref. [23] proposed
that MBL may occur at low energy density in systems with
long-range interactions via a very different mechanism of
charge confinement.
Model and setup.—The Hamiltonian of the long-range

quantum spin glass model of interest is given by

H ¼
X
ij

Jij
ji − jjα ẐiẐj − hx

X
i

X̂i; ð1Þ

where X̂i, Ẑi are the Pauli operators for the spin on-site i.
Following Ref. [6], Jij are chosen to be random, normal
distributed with standard deviation 1. All energies and
times are therefore dimensionless. Parameter α sets the
power of long-ranged interactions, and lies in the range
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1
2
< α < 1 so that in the absence of a transverse field hx the

system is SG at low temperatures [6]. Note that α ¼ 0
does not correspond to the Sherrington-Kirkpatrick
model, because in Eq. (1) the random variables Jij have
a standard deviation independent of system size. Monte
Carlo simulations of the classical model with hx ¼ 0
demonstrated a SG phase with critical temperature
Tc ¼ 0.6 for α ¼ 0.75 [24].
To probe the dynamical properties of the model (1), we

will focus on a quantum quench protocol, in which the
system is initially prepared in a product state, with spins
pointing along the z direction, Zi ¼ �1. The quantity of
interest is the decay of the initial magnetization pattern
under unitary evolution with the Hamiltonian (1). This
setup has been successfully used in cold atoms [25–27] and
trapped-ion [13] experiments to probe ergodicity breaking
via MBL.
Effective fields.—In an initial product state, each spin is

subject to a random z-field ϕi arising from the interaction
term in Eq. (1),

X
ij

Jij
ji − jjα ZiZj ¼

X
i

Ziϕi; ϕi ≡
X
j

Jij
ji − jjα Zj: ð2Þ

For hx ≪ 1, a typical spin will have hx ≪ jϕijtyp, and such
spin will at first precess around z axis, maintaining the
memory of its initial state. To relax and “forget” its
magnetization, the spin should either be involved in a
higher-order multispin resonant process, or its on-site field
ϕi should become smaller than hx. Both processes are very
sensitive to the distribution of on-site fields. We will first
study this distribution, finding a markedly different behav-
ior at high and low ϵ, consistent with Ref. [28].
At infinite temperature, meaning random, uncorrelated

Zi ¼ �1, the effective fields are normal distributed with
standard deviation σT¼∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ζð2αÞp
, which diverges as α

approaches 0.5 as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α − 1=2

p
. Fields experienced by

different spins are uncorrelated.
In contrast, if we restrict ourselves to low energy density,

the number of small fields gets suppressed. To prepare low-
energy configurations, we start with a random state and flip
each spin aligned with the local field, until each spin is
antialigned with the on-site field ϕi. We call such states
single spin-flip stable (SFS) [29].
The distribution of fields for such metastable states for

α ¼ 0.7 is shown in Fig. 1. In contrast to T ¼ ∞ the density
of small fields is severely suppressed, following a power
law for sufficiently small fields,

ρðϕÞ ∼ jϕjx ðjϕj ≪ 1Þ: ð3Þ

This implies that the smallest field found on a system of
size L scales as ϕmin ∼ L−1=ðxþ1Þ. We observe that for L≲
1000 there are significant finite-size effects of the fields
distribution, at least in the range jϕj≲ 0.1. We computed

the power x for the single-flip states as a function of α, and
the result is shown in Fig. 1.
Resonance avalanches.—Equipped with the distribution

of on-site fields, we can now discuss quantum dynamics
generated by transverse fields. We will focus on the
analysis of resonant processes arising under the application
of a (small) transverse field hx ≪ 1. Although the analysis
has many parallels with the arguments developed by
Burin and others [8,15–19], the glassiness of the under-
lying classical problem significantly modifies resonant
processes.
When the system is prepared in an initial product state,

only the spins with jϕij < hx can flip over the time
t ∼ 1=hx. We will call such spins resonant. The number
of resonant spins NrðLÞ depends on system size L, on the
temperature (or energy density) and on the transverse field
hx. We denote the typical distance between resonant spins
by d ¼ L=NrðLÞ.
Turning to dynamics, the resonant spins will

oscillate with frequency ω ∼ hx. This, in turn, will affect
the effective fields ϕj felt by other nonresonant spins. The
key question is whether these changes can drive new spins
to become resonant, and whether such a resonance ava-
lanche can eventually include the whole system.
For any (initially) nonresonant spins, the expected

change in effective field is Δϕj ∼
PNrðLÞ

i¼1 � 1
jdi;jjα where

di;j is the distance from the ith resonant spin to the site j.
Assuming that there are no correlations in the positions of
resonant spins, the typical change of field becomes
ðΔϕÞ2typ ∼ d−2α. If jΔϕjtyp > hx, spins that we originally
did not count as being resonant can become resonant.

FIG. 1. The distribution of effective fields ϕ in single-flip stable
states, for α ¼ 0.7, and various sizes L, averaged over 10 000 (for
L ¼ 3000) to 1 000 000 (for L ¼ 200) disorder realizations. The
distributions are extrapolated to L ¼ ∞ (black solid line) using
1=L scaling up to second order. The L ¼ ∞ distribution is fitted
for jϕj ≪ 1 by a power law ρðϕÞ ∼ jϕjx. Inset: the power x
depends on the interaction range parameter α. The dashed line
represents 1=α − 1, the threshold for stability against resonance
avalanches.
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It is expected (and verified below) that if this condition is
met, flipping one resonant spin will generally cause other
spins to become resonant. In this case, the system will
exhibit characteristic relaxation dynamics: as resonant
spins are flipping, an avalanche of new resonances will
lead to a complete loss of spin polarization. We note that
such resonance avalanches are reminiscent of the phe-
nomenon of spectral diffusion [18,30] in the context of
nonglassy models.
The frozen spins can therefore only remain frozen if the

resonances do not cause such an avalanche, which requires

hx > jΔϕjtyp ∼ d−α; ð4Þ

where d is the typical distance between resonant spins.
At infinite temperature T ¼ ∞ the distribution of fields

is Gaussian, which implies that the average distance
between resonant spins is d ∼ h−1x . The condition for the
stability of spin freezing, Eq. (4), becomes hx > chαx with c
some hx-independent constant. Because α < 1, at small hx
this inequality is violated. Therefore, at infinite tempera-
ture, we will always have an avalanche of resonances.
However, for low energy density states we found a

qualitatively different distribution of fields, ρðϕÞ ∼ jϕjx.
Now the distance between resonant spins scales as
d ∼ h−ðxþ1Þ

x . Therefore the condition for stability now
becomes hx > chαðxþ1Þ

x , with c an hx-independent constant.
This criterion is satisfied for small hx as long as
αðxþ 1Þ > 1. Therefore, there will be no avalanche of
resonances as long as

x >
1

α
− 1: ð5Þ

This bound is similar to the Efros-Shklovskii bound in the
Coulomb glass [31–33]. The stability analysis applied to
our model yields Eq. (5).
As shown in Fig. 1, this relation is satisfied for the

SFS states in our model for any 1=2 < α < 1. While the
values of x and 1=α − 1 are close to each other, the
bound is not saturated, unlike its analog in the Coulomb
glasses. Such behavior has been observed before in
systems, which, similar to our model, had no on-site
disorder [34,35].
Next, we test the existence of resonance avalanches in a

classical numerical simulation. Given an initial spin con-
figuration, we compute the on-site fields ϕi and identify all
resonant spins that satisfy jϕij < hx. We then flip one of the
resonant spins, chosen at random, recompute the distribu-
tion of fields ϕi, and check how many new spins become
resonant. This is iterated many times. The results, illus-
trated in Fig. 2, show that at low energy density the number
of resonant spins remains very low within this recursive
scheme, suggesting the stability of spin-glass order. At
infinite T, in contrast, we see as expected a resonance
avalanche: the number of spins affected by the avalanche

grows approximately as a square root of the number of
iterations.
Two-spin-flip stability.—At the single spin-flip level our

analysis shows that for a small field hx and initial SFS
states, most spins remain frozen. However, one can imagine
processes involving two spin-flips, where each individual
spin flip is not resonant but their combination is. The
amplitude of a second-order perturbative correction corre-
sponding to flipping spins 1 and 2 equals

A12→1̄ 2̄ ¼
h2x

−ϕ1 − ϕ2 þ 2
Jij
rα
12

�
1

−ϕ1

þ 1

−ϕ2

�
: ð6Þ

If jA12→1̄ 2̄j > 1, we will call this process resonant. Now if
either 1 or 2 are already single spin-flip resonant sites with
ϕ1;2 < hx, the process is naturally accounted for by the
resonance avalanches considered above. Our question is
thus: how many genuine two spin-flip resonances will exist
in this system?
The number of genuine two-spin-flip resonances at

T ¼ ∞ as a function of system size L can be estimated
[36], yielding N2resðLÞ ∼ L2−α. We have verified that this
approximately holds numerically for systems of size
L ≤ 4000 [29]. The case of metastable SFS states is more
intricate, because of correlations between different spins
and the corresponding fields. Our numerical simulations
revealed that the number of genuine two-spin-flip

FIG. 2. Left: number of spins which become resonant during
system’s evolution. To model the resonance avalanche, at each
step (horizontal axis) we randomly flip one resonant spin,
keeping track of all the spins that were resonant at some point
(vertical axis). Results are shown for system size L ¼ 1000
averaged over 200 initial states, for varying α and both low-
energy (SFS) states and T ¼ ∞ (random states). The high energy
density results show an approximately diffusive increase in the
total number of resonant spins. For the SFS states, the number of
resonant spins for each realization saturates. However, we find
that for some realizations saturation occurs at later times than for
others, due to the fact that spin flips are performed randomly. This
leads to an apparent slow growth of the average number of
resonances seen in the Figure. The number of resonant spins,
however, was never higher than 2% of all the spins. Right:
remnant spin polarization P∞ðn; LÞ for the six most resonant
spins, as a function of system size L [29]. The remnant polar-
izations decay slowly with system size.

PHYSICAL REVIEW LETTERS 125, 260405 (2020)

260405-3



resonances grows slower than the system size L. This
implies that the metastable states are stable with respect to
two-flip resonances, consistent with expectations based on
the Efros-Shklovskii stability arguments. For initial states
that are not only one- but also two-spin flip stable, the
number of two-spin-flip resonances induced by the trans-
verse field is expected to be suppressed even further.
Quantum dynamics and (non)ergodicity.—Next, we

discuss the implications of the resonance avalanches for
quench dynamics and eigenstate properties. Since experi-
ments are conducted for finite systems (with tens of
hundreds of spins), we will in particular be interested in
the effect of finite L.
Let us start with the case of infinite temperature. If L is

small such that there are no resonant spins at all (this occurs
if L≲ h−1x ), the system will exhibit usual MBL-like
properties, in particular, the initial magnetization pattern
will fail to relax even at t → ∞, and the system will appear
nonergodic. The eigenstates are also expected to appear
MBL-like: in particular, the level statistics is expected to be
Poisson.
Once L is increased such that there are at least a few

resonances for a typical initial state, the avalanche will be
effective and lead to the decay of initial magnetization. A
typical spin will decay after time td ∼ 1=h2x, but a broad
distribution of relaxation times is expected, because spins
are gradually included into the avalanche. This provides a
direct experimental signature of the resonance avalanche.
In this regime, eigenstates at T ¼ ∞ are expected to
become ergodic, and level statistics will obey Wigner-
Dyson distribution.
At low energy density, the nonresonant spins stay

nonresonant and will thus retain the memory of their initial
magnetization even at very long, and possibly infinite
times. Experimentally, this provides a direct signature of
ergodicity breaking.
An interesting question concerns the effect of resonant

spins on the “frozen” ones. One possibility is that the resonant
spins form a thermal bath which mediates the relaxation of
initially nonresonant spins and erasure SG order. As reported
below, we have studied the dynamics of the most resonant
spins for SFS states using ED, finding indications that this
scenario is not realized and SG order remains stable.
We note that SG order may also potentially be destroyed

by higher-order, multispin resonances, which can, e.g.,
couple different SFS states. In that case, ergodicity may be
restored. Given the extreme sparsity of two-spin resonan-
ces, we believe this possibility to be unlikely, and this is
confirmed by ED studies below.
Exact diagonalization.—Wewill now study the model of

Eq. (1) using exact diagonalization (ED) with periodic
boundary conditions, which has been used to diagnose
MBL phases [5,37]. Note that the experiments with trapped
ions were conducted with similar system sizes L ≈ 10–20,
so results below have direct experimental implications.

A common tool to distinguish between MBL and ergodic
behavior is to characterize level statistics via the
ratio of adjacent eigenvalue gaps, r ¼ minðδn; δnþ1Þ=
maxðδn; δnþ1Þ where δn ¼ En − En−1 is the gap between
two neighboring eigenvalues. This r-value approaches
0.53 in the ergodic phase, and r ¼ 0.39 for Poisson level
statistics in the localized phase. Additionally, we have
studied the Edwards-Anderson order parameter [3,38]
mEA ¼ ð1=L2ÞPijðhnjZiZjjniÞ2, which tends to zero in
the ergodic regime. A finite size scaling up to L ¼ 16 is
included in the Supplemental Material [29].
The two diagnostics, hri andmEA as a function of energy

density ϵ ¼ E=L and hx for system size L ¼ 12 averaged
over 2000 disorder realizations, are illustrated in Fig. 3. The
range of interaction is fixed at α ¼ 0.7.
Notably, at very small hx ≲ 0.1 states at all temperatures

appear localized. This is consistent with systems being too
small to have resonances. For hx ≳ 0.2 where resonance
avalanche becomes effective, in the middle of the
spectrum (T ¼ ∞) the system is clearly ergodic, as the r
value approached 0.53, and the Edward-Anderson order
parameter vanishes. At lower energy densities (near the
ends of the spectrum) the system stays localized up to larger
values of hx.
Large systems: dynamics of resonant spins.—We further

investigate the stability of SG at low energy density by
studying the dynamics of most resonant spins in large
systems. Here, we make the assumption that spins with
fields jϕj ≫ hx stay frozen. To check the self-consistency
of this assumption, we exactly solved the dynamics of the
Ls ¼ 6–14 most resonant spins using ED. Extrapolating
this dynamics we estimate the remnant longtime magneti-
zation of the six most resonant spins. We find that this
magnetization remains sizable (see Fig. 2), slowly decaying
to zero as L → ∞, thus establishing that there is no
runaway effect of incorporating more and more spins into
the exact dynamics of the most resonant spins. Note that
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FIG. 3. A qualitative phase diagram for α ¼ 0.7 can be inferred
from two different measures: the r value (left), and the Edwards-
Anderson order parameter (right), shown for L ¼ 12 as a function
of scaled energy density (0 means ground state and 0.5 is infinite
temperature) and transverse field hx.
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while our simulations started with initial SFS states, we
expect that our results extend to other low-energy states,
because each low-energy product state can be made SFS by
flipping a small fraction of spins.
Even though the resonant spins do not incite a loss

of polarization in the nonresonant spins, among
themselves they will eventually form an ergodic system.
This can be understood by looking at the Hamiltonian
for just the resonant spins (labeled by I, J): Hres ¼P

I h⃗I · σ⃗I þ
P

I;J JIJðẐIẐJ=jI − JjαÞ. The random field

h⃗I ¼ ð−hx; 0;ϕIÞ has a norm of order hx. The interactions
JIJ are now much reduced in strength: given that the typical

spacing between resonant spins scales as dres ∼ h−ð1þxÞ
x , the

interaction between neighboring resonant spins is of the

order jJIJj ∼ hαðxþ1Þ
x . As we saw above, αðxþ 1Þ > 1.

Thus, the interactions between resonant spins are weaker
than the on-site fields, and their long-range nature is
expected to lead to eventual thermalization of the
resonant-spin subsystem. A complete thermalization, how-
ever, requires extremely large system sizes, as incomplete
decay of polarization of resonant spins in Fig. 2 (right)
suggests.
Discussion.—In summary, we proposed to study the

interplay of glassiness and MBL—two generic mechanism
of ergodicity breaking—in a power-law interacting model
in 1D. We hope that our work will stimulate experiments
with trapped ions, where long-range interactions with a
tunable exponent have been demonstrated.
The onset of glassy behavior leads to an unconventional

regime of quantum dynamics: in contrast to high energy
density ϵ where the system behaves as ergodic, at low
energy density the memory of the initial state is retained.
In contrast to MBL systems, a set of resonant spins forms a
thermalizing system, which, however, cannot lead to the
decay of SG order.
We emphasize that the nonergodic low-ϵ regime, sig-

naled by the persistence of SG order, is a unique conse-
quence of glassiness: indeed, previous works [18] that
studied dynamics of long-range interacting systems with
power d < α < 2d, found eventual ergodic behavior
(accompanied by diffusive dynamics) even at low ϵ.
We finally note that it will be interesting to study the

high-order tunneling processes between low-energy states
separated by large energy barriers—a problem which has
central importance to the performance of the adiabatic
quantum algorithm for difficult optimization problems
[39]. Such a study will also give an insight into the nature
of eigenstates, which may violate the eigenstate thermal-
ization hypothesis, provided the tunneling matrix elements
are sufficiently strongly suppressed. If that is the case, the
eigenstates will exhibit clustering similar to that found in
infinite-range models [7].
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