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Spontaneous contractions of cardiomyocytes are driven by calcium oscillations due to the activity of
ionic calcium channels and pumps. The beating phase is related to the time-dependent deviation of the
oscillations from their average frequency, due to noise and the resulting cellular response. Here, we
demonstrate experimentally that, in addition to the short-time (1–2 Hz), beat-to-beat variability, there are
long-time correlations (tens of minutes) in the beating phase dynamics of isolated cardiomyocytes. Our
theoretical model relates these long-time correlations to cellular regulation that restores the frequency to its
average, homeostatic value in response to stochastic perturbations.
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Introduction.—Understanding the beating dynamics of
heart cells is important, since its variability may be related
to various diseases [1–4]. Recent experiments [5] showed
that the beating rate of isolated cardiomyocytes can be
entrained by (synchronized to) a nearby mechanical probe
via elastic interactions mediated by the surrounding matrix
[6]. Surprisingly, it was observed that, while the beating
rate was 1–2 Hz, about 15 min elapsed until the cell was
entrained. When the probe was stopped, the cell returned to
its intrinsic, spontaneous frequency only after about an
hour. Since the cells in those experiments are isolated and
propagation of the elastic signal is fast [6], the origin of
these apparent long timescales must stem from internal
biochemistry of the cardiomyocyte.
Motivated by these pacing experiments by Nitsan et al.

[5], we present here a conceptual hypothesis that relates the
apparent long timescales to cardiomyocyte biochemistry,
even in the absence of an external probe. Inspired by the
“fluctuation-dissipation” response of physical systems, we
hypothesized that the long timescales of entrainment
originate in the intrinsic dynamical response of the cell
to perturbations of its spontaneous oscillation frequency. To
validate our hypothesis, we designed and carried out new
experiments that measure the beating dynamics of isolated
cells over many hours. We analyze those experiments using
a simple theory (based on previously derived consider-
ations of calcium channels and pumps activity [7–12]) that
considers a competition of biochemical homeostasis and
noise. Our combined results demonstrate that, even in the
absence of an external probe, deviations of the beating
frequency from its average value are characterized by a
long timescale of the order of tens of minutes.
Cellular stochasticity results in deviations of the oscil-

lations from their average value. We show theoretically
that biological regulation that slowly restores these devia-
tions to their homeostatic value results in long-time phase

correlations. We therefore denote the characteristic time for
these correlations as the “regulation time” τr. Analyzing the
long-time phase correlations measured in our experiments,
we show that the data for different cells, for times shorter
than τr, collapse onto a theoretically predicted, universal
curve for the time-dependent variance of the beating phase.
This demonstrates that all the analyzed cells share common
dynamics, with a predicted regulation time on the order of
many minutes. Our experiments show that the long-time
correlations are still observed even when contractility is
inhibited by blebbistatin, suggesting that mechanical con-
traction is not essential for these correlations. Moreover, we
observe that inhibiting the activity of Ca2 þ =calmodulin-
dependent protein kinase II (CamKII), an enzyme involved
in regulation of the RyR channels, results in a much longer
regulation time for the beating dynamics. Thus, the value of
the regulation time may give insight to the mechanisms
related to Ca2þ channels that regulates spontaneous beating
in cardiac cells [13,14].
Theory.—Spontaneous calcium oscillations with a single

deterministic frequency have been theoretically related
to the dynamics of calcium channels and pumps [11,12,
15–17], resulting in the simple model presented in
Refs. [9,10]. The spontaneous nature of the oscillations
is driven by the feedback effect known as “calcium-induced
calcium release” (CICR) by which the ion channel activity
is modulated by the calcium released through the channel.
We previously showed [9,10] that this feedback can be
quantified from the measured properties of the RyR
channel dynamics and derived a simple, van der Pol–like
[18] equation that predicts spontaneous Ca2þ oscillations
when the CICR feedback effect is large enough (derivations
briefly reviewed in Supplemental Material [19]):

̈cðtÞ þ γ _cðtÞ þ ΓcðtÞ2 _cðtÞ þ Ω2
ccðtÞ ¼ 0; ð1Þ
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where cðtÞ is the deviations of calcium concentration from
their average. The linear (nonlinear) “friction” γ (Γ) and
deterministic, homeostatic frequency Ωc originate from the
average activity and CICR feedback of RyR channels and
calcium pumps (for a derivation, see Ref. [9]). Here, we
focus on stochastic effects on the oscillation frequency.
Stochastic effects due to biological noise can be accounted
for in two ways: (i) As an additive, kinetic “force” ηðtÞ
which is added to the right-hand side of the dynamical
equation, Eq. (1) or (2), as stochastic fluctuations in the
concentration of signaling molecules, that affect pump
and channel activity and, therefore, the frequency.
Biological regulation then restores the ion channel and
pump activity, from their noisy, stochastic values back to
the deterministic frequency Ωc. We show below that the
source of the observed, long-time correlations is associated
with an effectively noisy oscillation frequency ΩðtÞ, whose
average over the noise is hΩðtÞi ¼ Ωc. The additive
stochastic force ηðtÞ results in short-time fluctuations of
the beating frequency about its spontaneous value Ωc,
which are commonly referred to as the “beat-to-beat
variability.”
In this Letter, we focus on the long-time deviations of the

instantaneous beating frequency ΩðtÞ [after averaging over
ηðtÞ, the short-term noise] from its deterministic, average
value of Ωc. Such deviations come from the response of the
cell to noise via slow regulation of the beating frequency by
the cell through biochemical feedback loops. These occur
on a much longer timescale and are related in our model to
regulation of the beating frequency by a generic degree of
freedom that represents (for example) a change in the RyR
channel and Sarco/endoplasmic reticulum Ca2þ-ATPase
pump activity. Any modulation of these activities will
change the balance of calcium fluxes, resulting in modu-
lation of the beating frequency. For example, regulation of
the frequency may be accomplished by variation of the
concentration of phosphorylated RyR channels (the general
case is discussed in Supplemental Material [19], with the
results qualitatively the same). The concentration may vary
stochastically about a steady state, homeostatic value,
dictated by cellular conditions. Since the oscillation fre-
quency originates in the RyR channel activity, this gives
rise to a stochastic dynamical equation for the time
evolution of the frequency ΩðtÞ due to both the noise
and the homeostatic regulation:

dΩðtÞ
dt

¼ −
1

τr
½ΩðtÞ −Ωc� þ ξðtÞ: ð2Þ

The noise ξðtÞ is taken to be delta correlated in time on the
long timescale: hξðtÞξðt0Þi ¼ Dδðt − t0Þ. The frequency,
perturbed by the noise, is slowly restored to its homeostatic
value by biological regulation, represented by the term
∼½ΩðtÞ −Ωc�=τr. In our example, this “homeostatic force”
represents a biochemical feedback loop that works to restore
the concentration of activated channels, and, hence, the

oscillation frequency to its homeostatic value Ωc, by
modulating various signaling pathways not explicitly
included here [16,20–22]. In Supplemental Material [19],
we give an example of how regulation of a specific property
(such as the concentration of activated channels) gives rise to
an effective equation for the regulation of the frequency as in
Eq. (2). Note that, for a mechanically paced cell, the
spontaneous frequencyΩc is replaced by the external pacing
frequency, which results in a relaxation to the pacing
frequency instead. This is true for any external perturbation
that changes the spontaneous beating frequency of the cell.
The typical timescale of this regulation is τr, the “regulation
time,” which our experiments show is much longer than the
beating frequency, as explained below.
With the inclusion of noise and regulation of the fre-

quency ΩðtÞ, we have two coupled equations for the
instantaneous calcium concentration [Eq. (1)] and the
effective dynamics of the frequency [Eq. (2)]. Defining
the deviations of the frequency from its average ΔΩðtÞ ¼
ΩðtÞ −Ωc, the solution of Eq. (2) results in an expression
for time decay of the correlations ΔΩ, characterized by the
homeostatic regulation time τr:

Cðt − t0Þ ¼ hΔΩðtÞΔΩðt0Þi ¼ Dτre−jt−t
0j=τr : ð3Þ

With mean square frequency deviations,

h½ΔΩðtÞ − ΔΩðt0Þ�2i ¼ 2Dτrð1 − e−jt−t0j=τrÞ: ð4Þ

From Eq. (4), we see that the mean square deviations of
the frequency grow linearly in time for times shorter than
the regulation time (jt − t0j ≪ τr) and saturate at a constant
value of 2σ2 ¼ 2Dτr for long times jt − t0j ≫ τr, where σ is
the standard deviation of the distribution of ΔΩ. Thus, the
larger τr, the longer the time over which the frequency
“diffuses” before frequency deviations are saturated. When
translated to the homeostatic force that restores the fre-
quency to its average value, large τr corresponds to a weak
homeostatic restoring force [see Eq. (2)], while small
values of τr correspond to strong homeostatic force.
On short times, the fluctuations in frequency (relative to

its average) translate to a delay or an advance between
consecutive beats. These deviations not only affect the local
dynamics, but also accumulate so that, over time, several
beats are skipped or added compared to regular beating
with the fixed frequency Ωc. This accumulation can be
expressed in terms of the time-dependent beating phase,
defined for the calcium concentration as an integral over the
time-dependent frequency (see [23] and Supplemental
Material [19] for a derivation):

cðtÞ ¼ c

�Z
ΩðtÞdt

�
¼ c½Ωctþ ϕðtÞ�; ð5Þ

where a constant phase is equivalent to ΔΩ ¼ 0 and the
phase dynamics obeys dϕ=dt ¼ ΔΩ. Using the definition
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of Eq. (5) and the result of Eq. (3), we calculate the mean
square difference of the phase at two times, i.e., the
temporal phase variance δϕ2ðt − t0Þ ¼ h½ϕðtÞ − ϕðt0Þ�2i
(see Sec. D in Supplemental Material [19]):

δϕ2ðt − t0Þ ¼ 2Dτ3r

�jt − t0j
τr

− 1þ e−jt−t0j=τr
�
: ð6Þ

If the time interval τ ¼ jt − t0j is short compared to the
regulation time (τ ≪ τr), the phase variance grows quad-
ratically in time ∼τ2. This is because δϕ2 is a temporal
integral of the frequency variance, which at short times
grows linearly with τ. If the time interval is long compared
to the regulation time (τ ≫ τr), the phase variance grows
linearly in time. This is because at long times the regulation
of the frequency comes into effect, which yields a constant
frequency variance. Therefore, the profile of decay of
correlations in frequency (∼ _ϕ) and the subsequent time
dependence of the phase variance quantifies the intrinsic
timescales due to noise and homeostasis in the system. The
theoretical predictions for the δϕ2 motivated long-time
experimental measurements. Below, we show that analyz-
ing the experiments in terms of the phase variance allows us
to extract the regulation time τr and results in a collapse of
the data for different cells with different values of τr onto a
universal curve predicted by Eq. (6).
Experiment.—Neonatal rat cardiomyocytes were cul-

tured on a micropatterned, elastic substrate, embedded
with fluorescent beads (see methods in Sec. A in Supple-
mental Material [19], which includes Refs. [24–26]). The
cultured cells beat spontaneously, generating significant
substrate deformations along the contraction axis (long axis
of the cell), which results in an oscillatory, stochastic signal
representing the contraction-relaxation cycle (see Fig. S7 in
Sec. G in Supplemental Material [19]).
Each cell was monitored continuously for 2 min (hence-

forth referred to as “short experiments”), in order to
ascertain that the beating was relatively stable. The instan-
taneous and average frequencies were then estimated using
wavelet analysis. For each cell, the beating dynamics was
then tracked in fixed intervals of 1–2.5 min, where in each
interval the cell was imaged continuously for ∼7.7–15 s,
for a total duration of ∼4–10 h (henceforth referred to
as “long experiments”). The average frequency in each
interval was then estimated from the inverse of the average
peak-to-peak time (see Sec. E in Supplemental Material
[19]). This method effectively averages out the short-term
noise, allowing us to focus on the long-term stochastic
effects [due to ξðtÞ], and yields a coarse-grained, average
frequency ΩcðtÞ ¼ 0.87� 0.34 Hz (n ¼ 16).
In both the short and long experiments, we measure

the deviation of the frequency from its average via the fre-
quency difference ΔΩðtÞ ¼ ðΩcðtÞ − hΩciÞ. For the short
experiments, ΔΩ is the difference between the instanta-
neous frequency and its average (evaluated over 2 min).

For the long experiments, ΔΩ is the difference between the
coarse-grained frequency of each interval and its average
over the entire experiment (evaluated over ∼4–10 h).
Figure 1 compares the distribution of ΔΩ for the short

and long experiments [Figs. 1(a) and 1(c)], as well as their
evolution in time [Figs. 1(b) and 1(d)], for a representative
cell. The frequency fluctuations over time were similar in
both cases, with an average standard deviation σ ¼ 0.192�
0.171 Hz and σ ¼ 0.157� 0.091 Hz (n ¼ 16) for the
short and long experiments, respectively. However, while
for the short experiments the instantaneous frequency
remains correlated over several seconds, for the long
experiments the coarse-grained frequency remains corre-
lated over many minutes [see Figs. 1(b) and 1(d) and Sec. D
in Supplemental Material [19] ]. Our focus is only on the
long-term noise, for which the frequency fluctuations are
related to the model parameters via σ2 ¼ Dτr.
As explained in the previous section, the beating phase is

defined as the temporal integral of the frequency difference
ΔΩ for the long experiments (where the contribution due to
the short-term noise is averaged out by our coarse-graining
method). Note that, in order to obtain the phase for the long
experiments, we interpolated the value of the coarse-
grained frequency ΩcðtÞ in each interval to vary linearly
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FIG. 1. The distribution (a),(c) and time evolution (b),(d) of the
beating frequencies normalized by the average beating frequency
for a representative cell. For the short experiments (left), the
beating was tracked continuously for 2 min (a),(b), and the
frequencies were evaluated using wavelet analysis and are
normalized by the 2 min average frequency. For the long
experiments, the beating was tracked intermittently for
∼7.7–15 s at intervals of 1–2.5 min (c),(d). The frequency within
each interval is calculated as the average of the inverse peak-to-
peak time (which yields similar results when calculated by
wavelet analysis; see Sec. E in Supplemental Material [19])
and is normalized by the average frequency of the entire
experiment (4–10 h).
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between intervals. In Fig. 2(a), we plot the experimental
equivalent of δϕ2ðτÞ, as a function of the time lag
τ ¼ jt − t0j. Consistent with our derivation in Eq. (6),
δϕ2ðτÞ shows a quadratic increase at short times and a
linear increase in longer times (see Fig. 2 and Fig. S2 in
Supplemental Material [19]). This suggests a transition
from a regime where regulation of the frequency is in
progress (the frequency variance increases linearly with
time) to a long-time regime (t ≫ τr) where the frequency
reaches its homeostatic value (the frequency variance
saturates at a constant value).
To show that indeed all cells follow similar dynamics, we

evaluate τr from a linearization of δϕ2ðτÞ=τ2 (see Sec. D in
Supplemental Material [19] for details), which results in an
average regulation time τr ¼ 17.9� 7.2 min (n ¼ 16). We
use this estimate of τr, along with the previously calculated
frequency variance σ2, to plot the scaled version of the phase
variance ∼δϕ2ðTÞ=ðστrÞ2, where we define the scaled time
T ¼ τ=τr. Figure 2(b) shows the dimensionless, rescaled
variance as a function of rescaled time for all cells. One can
see that, up until the regulation time (of the order of
∼10 min), the data collapse on a curve given by the similarly
scaled version of Eq. (6) (black line), validating our theory. At
longer times, deviations from the theory occur, possibly due
to another regulatory process with additional timescales,
which require an extension of our theory (see Sec. F in
Supplemental Material [19] for one possible extension).
Biochemical perturbations.—In a separate set of experi-

ments, we culture the cells with 2.5 μM of blebbistatin,
which inhibits myosin activity and, hence, actomyosin
contractility. As evidenced in Sec. G in Supplemental
Material [19], long-time regulation of the average beating
frequency still persists even when contractility is inhibited.
Therefore, actomyosin activity is not essential for long-time
regulation of beating.
To obtain insight into the processes that control regu-

lation and the value of τr, we conducted a separate set of

experiments, where cells were cultured with 10 μM auto-
camtide-2-related inhibitory peptide (AIP), which inhibits
Ca2þ/calmodulin-dependent protein kinase II (CaMKII)
activity that is known to regulate RyR kinetics [27,28].
The beating dynamics of each cell were measured for ∼4 h,
then AIP was applied, and the dynamics were measured
for an additional ∼6 h. We then calculated and compared
for each cell the average beating frequency and regulation
time before and after culturing with AIP (see Sec. G in
Supplemental Material [19]). Interestingly, we find that
across all cells (n ¼ 7) the regulation time τr increase
considerably when AIP is introduced. For these experi-
ments, the regulation time with AIP was increased by an
average factor of ∼2.5 (τr=τ0 ¼ 2.55� 0.30, where the
subscript 0 denotes the measurement before AIP applica-
tion). The strong dependence of the value of τr on CaMKII
activity suggests that biochemical modification of channels
and enzymes that regulate calcium dynamics plays a major
role in the feedback loop that drives the cell back to
homeostasis after perturbation by noise. The changes in the
regulation time due to AIP suggests that this biochemical
modification slows the homeostatic response that restores
the beating frequency to its average.
Discussion.—At the organ level, it was shown that long-

time correlations in the beating rate, or lack thereof, are
associated with certain pathological conditions [29,30].
Our single-cell experiments and theory show that such
long-time correlations are apparent even at the single-cell
level and do not necessarily involve intercellular interac-
tion. We show that, while correlations between consecutive
beats decay over short times (seconds), there are significant
long-time correlations (minutes) in the beating dynamics of
isolated cardiomyocytes due to slow modulations of the
frequency. These correlations are characterized by a regu-
lation time τr ∼ 20 min, much longer than the timescales
associated with beating (∼1 s). The long regulation time
may originate from slow, coupled biochemical feedback
loops that drive cell back to homeostasis. Our mean field
theory considers the “average” channel and pump dynam-
ics and suggests that regulation of these can affect the
instantaneous oscillation frequency [16,20,22].
We further show that inhibiting contractility with bleb-

bistatin did not diminish the long-time correlations in
cultured cells. This implies that electromechanical coupling
is not necessary for long-time correlations, although it can
obviously modulate them. Additionally, we have shown
that culturing cells with AIP (that inhibits CaMKII activity)
results in an increase in the regulation time, probably by
interfering with regulation of calcium dynamics.
Recent experiments and theory have shown that mechani-

cal pacing of isolated cells (by a nearby cell or an inert
mechanical probe) can significantly reduce the short-term
fluctuations (beat-to-beat variability) in amplitude and fre-
quency after ∼10–15 minutes of “training” [31,32].
Additionally, cells synchronized to an oscillating mechanical
probe within 10–15 min and maintain beating with the

(a) (b)

FIG. 2. (a) Temporal phase variance δϕ2ðτÞ as measured for the
different cells in the long experiments, plotted as a function of
time τ, and (b) the same variance scaled to the frequency variance
(σ2) and plotted as a function of the scaled time τ=τr. Here σ2 is
evaluated from the width of the distribution of frequencies, and τr
is estimated from the linearization of the temporal variance scaled
by τ2. The scaled version of the analytical result of Eq. (6) is also
plotted (black line).
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pacing frequency for 1 h after the pacing has stopped. These
timescales for mechanical communication between cells are
comparable to the observed regulation time [5]. It was
further shown that mechanical noise reduction involves
enzymatic activity (e.g., CaMKII). The similarity between
the timescale for mechanical communication and the value
of τr and the involvement of CaMKII both in mechanical
communication and in modulating the “regulation time”
suggests that the same regulation mechanism which controls
the recovery of a cell from stochastic perturbations is
responsible for the slow kinetics of mechanical communi-
cations. It will also be interesting to see how the observed
regulation time varies for a multicell cluster or assembly of
interacting cardiomyocytes [33], which may indicate the role
of τr in tissue analogs.
The ability to maintain and regulate coherent beating

is crucial for the viability of beating cardiomyocytes. The
regulation time as well as the temporal variance of the
beating are simple, noninvasive metrics that can serve as
indicators for possible cardiomyocyte dysfunction.
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