
 

Glassy Behavior of Sticky Spheres: What Lies beyond Experimental Timescales?
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We use the swap Monte Carlo algorithm to analyze the glassy behavior of sticky spheres in equilibrium
conditions at densities where conventional simulations and experiments fail to reach equilibrium, beyond
predicted phase transitions and dynamic singularities. We demonstrate the existence of a unique ergodic
region comprising all the distinct phases previously reported, except for a phase-separated region at strong
adhesion. All structural and dynamic observables evolve gradually within this ergodic region, the physics
evolving smoothly from well-known hard sphere glassy behavior at small adhesions and large densities, to
a more complex glassy regime characterized by unusually broad distributions of relaxation timescales and
length scales at large adhesions.
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Steeply repulsive particles with very short-range attrac-
tive forces (“sticky spheres”) are experimentally realized
with colloids [1,2]. When the attraction range is small
compared to the particle size, the physics of sticky spheres
differs qualitatively from that of atomic liquids [3–5].
Sticky spheres thus represent a unique paradigm for the
statistical mechanics of soft materials and simple fluids,
motivating a large number of theoretical studies and
experiments. The phase diagram of sticky spheres is
explored by changing the volume fraction and the adhesion
strength, showing interesting behavior at low (clustering
and phase separation [6]) and large (crystallization [7,8],
glassy dynamics [9]) volume fractions.
Over the last two decades, the glass transition of sticky

spheres received considerable attention. This effort gathered
momentum when the mode-coupling theory (MCT) of the
glass transition [10] was applied to the square-well potential
to predict the phase behavior and glassy dynamics of sticky
spheres [11–15]. The predicted existence of two types of
glass transition, of reentrant glassy dynamics, and of a glass-
glass phase transition line ending at a singular critical point
giving rise to nontrivial relaxation patterns triggered
massive theoretical [16–20], numerical [21–30], and experi-
mental [9,31–38] efforts, which continue to this day.
For this reason, published work is often torn between

successes and failures of these MCT predictions. Two
recent computational studies [39,40] offer contradicting
conclusions even on basic features of glassy sticky spheres
and important physical questions are left unanswered
which go well beyond the relevance of MCT predictions.
There is a broad agreement on the existence of reentrant
dynamics along isochores [9,24,32], nontrivial dynamic
correlation functions at intermediate adhesion [23,26], and
increasingly localized particle motion at large adhesion [9].

On the other hand the existence, nature, and physical
relevance of the MCT liquid-glass and glass-glass lines, of
various phases (equilibrium gel, attractive, repulsive,
bonded and nonbonded glasses), and the interplay between
gelation, glassiness, and phase separation remain debated.
Resolving these questions has been technically too difficult
so far, as large relaxation timescales plague both computer
simulations and experiments, and prohibit the exploration
of the equilibrium phase diagram. Informative nonequili-
brium aging studies at large densities have been performed
instead [27,39,41].
Here we show that the swap Monte Carlo algorithm,

which has recently provided an equilibration speedup larger
than 1011 in several three-dimensional model glass formers
[42] (including hard spheres [43–45]), performs equally
well for dense sticky spheres. This decisive computational
advance allows us to perform a complete exploration of
the equilibrium phase diagram of sticky spheres, including
regions at large densities where distinct phases were
predicted or numerically reported. Our simulations instead
reveal the existence of a broad ergodic fluid phase limited at
large adhesions by a phase-separated region where non-
equilibrium gelation may occur. Within the ergodic fluid,
the dynamics is reentrant along isochores, and evolves
smoothly from the well-known hard sphere limit to a more
complex sticky glassy dynamics characterized by a broad
hierarchy of relaxation timescales and length scales, but
this appears distinct from the predicted MCT phases and
singularities, which we do not observe.
We describe sticky spheres using the well-studied system

of hard spheres decorated with a short-range attractive
square well. Particles separated by rij have interaction
energy Vðrij ≤ σijÞ ¼ ∞, Vðσij < rij < λσijÞ ¼ −u, and
Vðrij > σijÞ ¼ 0 where ðλ − 1Þσij defines the width of the
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attractive well, and σij ¼ ðσi þ σjÞ=2. To compare with
other studies, we use the relative width ϵ ¼ ðλ − 1Þ=λ ¼
0.03 of the square well [23,25,27]. This value is often
used as for it, MCT predicts the existence of an A3

singularity within the glass phase, close enough to
affect the system’s dynamics at points where it can be
equilibrated on accessible timescales. We use a continuous
distribution of particle diameters, Pðσmin ≤ σ ≤ σmaxÞ ¼
A=σ3, where A is a normalization constant. We choose
σmin and σmax to provide a polydispersity of Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hσ2i − hσi2
p

=hσi ¼ 23%. This choice prevents crystalli-
zation, makes the swap Monte Carlo algorithm efficient,
and does not appear to lead to novel features in the
dynamics, when compared to different types of size
dispersity [42,43,46]. We use Monte Carlo dynamics to
explore the structure and dynamics of the system.
Equilibration is achieved using swap Monte Carlo simu-
lations, with details as in Refs. [42,47]. To analyze the

dynamics, we perform conventional Monte Carlo simula-
tions, which describe glassy dynamics equivalently to
Brownian and molecular dynamics [48]. We simulate N ¼
1000 particles in a periodic cubic box of volume V. The
packing fraction is ϕ ¼ πNhσ3i=ð6VÞ. We fix the temper-
ature β ¼ kBT ¼ 1 and vary the well depth and packing
fraction to explore the ðu;ϕÞ phase diagram. This produces
equivalent results to varying the temperature with u fixed,
as u=T is the appropriate control parameter. Additional
simulations withN ¼ 8000 are performed to investigate the
phase separation boundary at large u. Times are measured
in units of Monte Carlo steps, where a step represents N
attempted Monte Carlo moves (swap or translational), and
distances in units of the average particle diameter hσi.
To quantify dynamics, we calculate the mean-

squared displacement (MSD) defined as hr2ðtÞi ¼ ð1=NÞ
P

i jriðtÞ − rið0Þj2, where riðtÞ is the position of particle i
at time t. The MSD is the second moment of the van Hove
distribution of single particle displacements: Gsðx; tÞ ¼
hδðx − jxiðtÞ − xið0ÞjÞi, for displacements along the x
direction (later averaged over all directions). We define
the self-part of the incoherent scattering function:
fðq; tÞ ¼ ð1=NÞPj e

iq:½rjðtÞ−rjð0Þ�. We perform a spherical
average at jqj ¼ 7.8, close to the first peak of the static
structure factor, and define the structural relaxation
time τα as fðjqj ¼ 7.8; ταÞ ¼ e−1. When the system is
nearly arrested, we fit these functions using fðq; tÞ ¼
fq þ hq½Bð1Þ

q lnðt=τÞ þ Bð2Þ
q ln2ðt=τÞ� [22,26], mainly to

extract the nonergodicity parameter fq.
To ensure efficient equilibration at large ϕ, we use swap

Monte Carlo simulations. At each state point, we define
τswapα via fðq; tÞ measured in the presence of swap moves.
Note that all particles (small and large) need to relax for this
function to decay, which ensures full ergodicity. We
consider our system as adequately equilibrated if it has
been simulated longer than 4τswapα [42]. We collect inde-
pendent equilibrium configurations at many state points
ðu;ϕÞ to study static behavior, and from these we launch
many independent, conventional Monte Carlo simulations
lasting up to ts ¼ 5 × 108 MC steps to analyze the
equilibrium dynamics over a broad time window, including
at conditions where the physical relaxation time τα is larger
than ts by many orders of magnitude. This is only possible
thanks to the combined use of swap and conventional
Monte Carlo dynamics.
The decisive progress provided by the swap algorithm

can be appreciated in Fig. 1(a), which shows the equilib-
rium ðu;ϕÞ phase diagram. We distinguish two regions.
The large blue area comprises state points where we
achieved thermal equilibrium. This region extends to
arbitrarily low ϕ, and is limited at large u ≳ 3.5 by a
phase-separated region. The ergodic region is limited at
large ϕ by our ability to reach equilibrium, i.e., by the time
spent running simulations. With more time, or an algorithm
more efficient than swap we expect the ergodic region to
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FIG. 1. (a) Equilibrium phase diagram ðu;ϕÞ of sticky spheres,
with a large ergodic fluid (blue) and a phase separated region
(green). The isochrone τswapα ¼ 107 MC steps (full cyan line)
limits the ergodic region at large ϕ, whereas the isochrone τα ¼
107 MC steps (black dashed line) marks the limit of conventional
simulations. The avoided MCT singularities are mapped in
orange (dashed line: fluid to attractive glass, dot-dashed line:
fluid to repulsive glass, solid line: glass-glass line) ending at the
A3 singularity (orange symbol). Grey areas could not be explored
in equilibrium, and the black cross corresponds to Fig. 2(a).
(b) Potential energy as a function of the time after a quench along
the isochore ϕ ¼ 0.5. (c) Relaxation times with (blue) and
without (red) swap at u ¼ 3.0.
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extend to higher ϕ. We empirically define the right-most
boundary as the isochrone where τswapα ¼ 107 MC steps, but
densities even larger than this ϕ ≈ 0.65–0.66 empirical
boundary could presumably be explored by performing
longer simulations.
There is a single phase transition in Fig. 1(a), not

described by MCT. Holding ϕ constant and increasing
u, the system phase separates into two phases with distinct
densities. The potential energy after quenching from u ¼ 0
to different points along the isochore ϕ ¼ 0.5 is shown in
Fig. 1(b). The large jump and different time dependence of
the energy at long times between u ¼ 3 and u ¼ 3.5
indicates phase separation occurs somewhere between
these points. The heterogeneous structure of the system
was studied at long times, and the red crosses in Fig. 1(a)
placed at points above which phase separation is seen to
have occurred. This can be done up to large volume
fractions near ϕ ¼ 0.6 [40] but at larger ϕ, the amount
of low-density phase becomes too small and the coarsening
too slow to identify the phase separation clearly. At very
large u, the system resembles a gel but the slow decrease in
energy at long times shows that the system coarsens [49],
indicating the gel is not stable.
Everywhere in the blue area of Fig. 1(a), the system is an

ergodic fluid. The significance of this conclusion comes
when considering the physical dynamics of the system.
Increasing ϕ at constant u, the relaxation time τα increases
very fast and the system becomes arrested on the obser-
vational timescales, as shown for u ¼ 3.0 in Fig. 1(c). This
figure also illustrates the giant speedup afforded by swap
Monte Carlo dynamics at high ϕ for sticky particles. We
report in Fig. 1(a) the isochrone τα ¼ 107 MC steps, which
marks the limit where conventional simulations equilibrate.
The isochrones with and without swap are parallel, but
separated by a large gap Δϕ ≃ 0.05, nearly independent of
u. This wide new territory is explored in equilibrium for the
first time here, and provides distinct insight into the physics
of sticky spheres at large densities.
Crucially, all distinct phases reported previously for this

system belong to the same ergodic fluid phase. We conclude
that none of these phases actually exists as such, and the
phase diagram is much simpler than anticipated [12,32,39]
with only two phases separated by the well-known discon-
tinuous liquid-gas thermodynamic instability. Deep inside
the phase separating region, coarsening towards a fully
demixed state may become slow, but is not arrested [49].
Given the time window accessible to colloidal experiments,
the phase separation is never complete and the system
behaves as a colloidal gel [36,50–52], with physical proper-
ties that are slowly aging. This represents the nonequilibrium
route to colloidal gelation [53].
The ergodic region contains in particular all sharp features

theoretically predicted by MCT which we map in Fig. 1(a)
by following earlier work fitting our measured relaxation
times to MCT power law predictions. The liquid-glass

and glass-glass transition lines ending at the A3 singularity
all belong to the ergodic fluid. Therefore, they represent, at
best, smooth physical crossovers [19]. Our demonstration
that all ideal MCT singularities disappear in physical
systems of sticky spheres echoes equivalent findings for
molecular glasses [54] and colloidal hard spheres [55],
which remain debated in the colloidal context [56–60].
Is the concept of an avoided A3 singularity nevertheless

useful? Our model displays the physical behavior expected
for a system with competing attractive and repulsive
interactions. The banana-shaped iso-τα line in Fig. 1(a)
implies reentrant glassy dynamics as u varies along iso-
chores. Reentrance is mathematically described by MCT
via the existence of two distinct glass transition lines, but
these are not required to explain it [19]. Much less trivial is
the observation of a transient “logarithmic” decay of fðq; tÞ
at well-chosen state points approaching the A3 point
[23,26] where the relaxation should become purely
logarithmic [14]. In Fig. 2(a), we show fðq; tÞ at ðϕ ¼
0.630; u ¼ 2.5Þ [black cross in Fig. 1(a)] for a range of
wave vectors q. The decay time increases with decreasing
q, showing that the system remains mobile on short length
scales but is frozen on long length scales. At intermediate q
values, a nearly logarithmic time dependence holds over
about 5 decades, a behavior clearly distinct from the
conventional two-step decay observed in most glassy
materials [54].
Previous work attributed this unusual dynamics to

proximity to the A3 singularity [23,24,26]. We can test
this hypothesis directly by measuring the equilibrium
dynamics much closer to the A3 singularity, as in Fig. 2(b).
We find that all hints of logarithmic behavior are gone, the
dynamics now being consistent with a simpler two-step
decay. (At timescales much larger than those shown here,
structural relaxation will eventually take place.) These data
suggest that the existence of an A3 singularity may not be
the best physical way to interpret the unconventional
dynamics in Fig. 2(a). It was shown, for instance, that
by numerically tuning the strength of competing attractive
and repulsive interactions [25,61,62], a near-logarithmic
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FIG. 2. fðq; tÞ at various q measured at (a) the black cross
ðϕ ¼ 0.630; u ¼ 2.5Þ or (b) the orange cross ðϕ ¼ 0.654;
u ¼ 2.5Þ in Fig. 1(a). The near-logarithmic decay highlighted
in (a) for q ¼ 26.3 is no longer present closer to the putative A3

singularity in (b).
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decay may appear or disappear, or be replaced by a simpler
multistep decay.
Our results dispel the possibility that several distinct

phases characterize dense sticky spheres [32,39]. No sharp
distinction exists between attractive, repulsive, bonded, and
nonbonded glasses. Instead, we now show that increasing
adhesion smoothly changes the physics between two
qualitatively distinct types of glassy dynamics. To see this,
we explore the large ϕ region using several paths in the
phase diagram changing either u or ϕ.
Glassy dynamics is encountered for any u≲ 3.5 as ϕ is

increased, see Fig. 3. In all cases, the diffusion constant
drops by several orders of magnitude as ϕ increases, until
diffusion becomes too slow to be observed. However,
interesting differences can be seen between repulsive and
sticky particles. When u ¼ 0, the MSD displays a well-
defined plateau, whose amplitude decreases smoothly with
ϕ. For u ¼ 3.0 no well-defined plateau can be seen, even
for packing fractions as large as ϕ ¼ 0.66 (remember that
all data are taken in equilibrium and so we do not expect a
plateau at even larger times). The plateau is replaced by a
slow subdiffusive regime that extends over 7 decades in
time dramatically distinct from the hard sphere cage
physics. This behavior also differs from ideas of a MCT-
inspired attractive [12,25] or a bonded [39] glass suggested
from simulations, and is not to be confused with non-
equilibrium gelation either [40].
The sharp distinction between attractive and repulsive

glasses is nonexistent, but in the regime u ≈ 2.5–3.5
between phase separation and hard spheres the system
exhibits unusual glassy dynamics, uncovered here
thanks to swap Monte Carlo simulations. We characterize
this regime further in Fig. 4 by changing u along the
ϕ ¼ 0.65 isochore, which crosses the (putative) glass-glass
line very close to the A3 singularity. This isochore lies
in the region where equilibration can only be achieved
using swap.
In Fig. 4(a), we show the nonergodicity parameter. At all

wave vectors fq is higher at u ¼ 3.5 than it is at u ¼ 0,
showing that stronger adhesion means less mobility at all
length scales. The change in fq is greatest for large q (short

length scales). When u is small, particles are free to move
within the hard sphere cages but are immobilized on long
length scales. As u increases, the attractive well can trap (or
“bond” [39]) particles at much shorter distances. Attractive
interactions also destabilize the hard sphere glass, which
results in a slight nonmonotonic behavior of fq at small q
near u ¼ 1.5. Again, fq varies smoothly with u (this is true
across a range of ϕ) in contrast to the sharp jump predicted
across the MCT glass-glass line.
The marked (but gradual) evolution along the ϕ ¼ 0.65

isochore is further illustrated in Figs. 4(b) and 4(c) showing
the time dependence of hr2ðtÞi and fðq; tÞ. These functions
change dramatically in the range u ∈ ½0; 3.5�. At small u a
well-developed plateau exists: the particles are caged by
repulsive interactions with their neighbors. The approach to
this long-lived (6 decades in time) plateau is fast. As u
increases clear signs of a structural relaxation speedup
appear at long times, together with a weakening of the
plateau. Increasing u further, the fast approach to a plateau
gets replaced by a slow subdiffusion (in hr2ðtÞi), or a slow
decay [in fðq; tÞ]. This shows that at large u particles are
neither caged nor bonded, but instead get arrested over
multiple length scales, ranging from very short correspond-
ing to the attractive well width to larger than the hard sphere
cage size, which is no longer relevant. This differs from the
picture of a bonded glass [39], but leaves room for a glass
transition where adhesion is relevant, at odds with [40].
Rather they demonstrate that the structure and short-time
dynamics of sticky spheres at large u is highly hetero-
geneous [29,34,37], and involves a very broad hierarchy
of timescales and length scales long before structural
relaxation.
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FIG. 3. Evolution of the MSD with packing fraction for
(a) u ¼ 0. and (b) u ¼ 3.0. The equilibrium glassy physics at
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different from that of hard spheres.
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The increasing heterogeneity of the glassy structure of
sticky spheres is finally confirmed by the evolution of
the van Hove distribution in Fig. 4(d). A near-Gaussian
distribution is observed at small u, confirming the perti-
nence of a description of the hard sphere glass with a
typical cage size [63]. By contrast the van Hove distribution
is much broader and strongly non-Gaussian at large u, with
both a large peak at very small displacements and a fat non-
Gaussian tail at large displacements, suggesting enhanced
dynamic heterogeneity [29].
Using swap Monte Carlo simulations, we have explored

the complete equilibrium phase diagram of dense sticky
spheres. A clarifying physical picture emerges with three
distinct regimes of slow dynamics. At large adhesions,
u ≥ 3.5, the system phase separates at least up to ϕ ¼ 0.60
and discontinuously enters a slowly coarsening aging
regime leading to nonequilibrium gelation. At small
u ≤ 1.5 and large ϕ the system displays well-known hard
sphere glassy dynamics, characterized by a two-step decay
of correlation functions and a well-defined cage size at
intermediate times. Finally, in the regime u ¼ 1.5–3.5 and
large ϕ unusual glassy dynamics are observed, character-
ized by a broad distribution of relaxation timescales and
length scales and a short-time dynamics distinct from hard
spheres. We are aware of no atomic or molecular experi-
mental analog of this unusual glassy behavior, which
involves multiple (time and length) scales and extended
subdiffusion long before the structural relaxation. The
sharp distinction predicted by MCT between two types
of glassy dynamics is invalidated by the data, which more
importantly do not support the physical relevance of an
avoided A3 singularity to interpret the dynamics. The
transient logarithmic time decay has a simpler interpreta-
tion and is not seen on approaching the A3 location. The
very unusual time correlation functions we report are
instead observed at a much larger adhesion strength, away
from the avoided A3 singularity. The proposed clarification
of the phase behavior and dynamics of dense sticky systems
should help reinterpreting past experiments and suggest
new ones. Future numerical work could also help
understand better the rheological behavior [21,64–67] in
adhesive colloidal glasses, by subjecting high density
equilibrium states to quasistatic and oscillatory shear.
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