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We derive a general criterion for determining the onset of superradiant phase transition in electronic
bands coupled to a cavity field, with possibly electron-electron interactions. For longitudinal superradiance
in 2D or genuine 1D systems, we prove that it is always prevented, thereby extending existing no-go
theorems. Instead, a superradiant phase transition can occur to a nonuniform transverse cavity field and we
give specific examples in noninteracting models, either through Fermi surface nesting or parabolic band
touching. Investigating the resulting time-reversal symmetry breaking superradiant states, we find in the
former case Fermi surface lifting down to four Dirac points on a square lattice model, with topologically
protected zero modes, and in the latter case topological bands with nonzero Chern number on an hexagonal
lattice.
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The study of the quantum-mechanical interaction
between light and matter has been a driving field in physics
in the past century with its application in different research
fields, such as laser cooling [1,2], quantum information,
and quantum computing [3–5]. Experimental advances in
cavity quantum electrodynamics [6,7] have made it
possible to integrate solid-state materials with optical
cavities [8–12], thus paving the way for cavity quantum
electrodynamics at the micrometer and even nanometer
scale. This recent tremendous progress opens the door
to harness electronic properties of solid-state materials
[13–15] and eventually to emulate new exotic collective
phases [16,17].
In this context, the phenomenon of superradiance plays a

pivotal role [18]. It was originally predicted in the Dicke
model [19–21], where a single cavity mode is coupled to an
ensemble of two-levels systems (dipoles). The collective
and coherent interaction can lead to a so-called superradiant
phase in which the dipoles emit light at high intensity, i.e.,
macroscopically populate the cavity. This phase transition
has been observed first in optically pumped gas [22], in
photoexcited semiconducting quantum dots [23,24], and in
pumped ultracold gases trapped in an ultrahigh-finesse
optical cavity [25]. These experiments involve, however, an
external drive and no equilibrium version of superradiance
has yet been experimentally demonstrated.
Indeed, in realistic systems, the linear light-matter

coupling of the Dicke model is supplemented by a
diamagnetic term, quadratic in the potential vector and
detrimental to a superradiant phase transition. The relative
balance between the two competing terms is generally
fixed by the Thomas-Reiche-Kuhn (TRK) sum rule and
prevents a superradiant state to occur through no-go
theorems [26–28] in most systems. Suggestions to bypass

no-go theorems have been made, involving for instance
magnetic dipolar interactions [29–31] or electron-electron
interactions [32], but the proper account or not of the TRK
sum rule have led to mistakes and controversies in past
studies [16,33–39]. In the case of electronic systems, a no-
go theorem for photon condensation (or equilibrium super-
radiance) has been recently proven [40], seemingly closing
the door to equilibrium exotic polaritonic phases. It holds
even in the presence of (strong) electron-electron inter-
actions but requires a uniform cavity field. Incidentally, a
crossing of Landau levels in a 2D electron gas has been
predicted to induce a superradiant instability in a spatially
varying cavity field [41].
The purpose of this Letter is to provide a general

framework for predicting superradiant phase transitions in
electronic systems, thereby connecting the above studies.
Building on a lattice model, which automatically exhibits
gauge invariance and the associated TRK sum rule, we
derive a general criterion for the occurrence of super-
radiance. The no-go theorem of Ref. [40] is circumvented
by taking into account the finite momentum exchanged
between the photon mode and the electron gas, extending the
findings of Ref. [41]. We find that superradiance can occur
only for a transverse cavity field. For a longitudinal field
[42], we derive an extended TRK sum rule at finite
momentum which definitely prevents photon condensation
and superradiance in one-dimensional settings. We remark
that the aforementioned sum rule does not forbid ferroelec-
tric transitions driven by the electron-electron interaction in
one-dimensional systems [30], or the photon-mediated
charge density wave transition predicted theoretically in
1D optical gases [43]. We explore several explicit non-
interacting models in which a superradiant phase transition
takes place, either through nesting or quadratic band
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touching. We detail the resulting superradiant phases, where
the magnetic flux gives rise to a spatially modulated charge
current order. Interestingly, the symmetry broken phases
bear nontrivial topological properties.
The model.—Without loss of generality, we consider a

lattice, or tight-binding, model to describe the crystalline
band structure of a solid-state material. The Hamiltonian
Hel ¼ H0 þHint includes a kinetic term

H0 ¼ −
X
j;δ

X
αβ

tδαβc
†
Rj;α

cRj;βþδ ð1Þ

with the cell index j, the orbital indices α=β and Rj;α the
corresponding site positions. The resulting Bloch
Hamiltonian hαβðkÞ ¼ −

P
δ t

δ
αβe

ik·ðRj;βþδ−Rj;αÞ can be writ-
ten in terms of the hopping amplitudes tδαβ. Hint is assumed
to contain only density-density interactions. The electronic
system is either embedded into a three-dimensional cavity
or coupled to free space photons described by the quantum
potential vector ÂðrÞ. The light-matter coupling is per-
formed in the Coulomb gauge through Peierls substitution
in Eq. (1), tδαβ → tδαβe

−ieλ=c with

λ ¼
Z

Rj;βþδ

Rj;α

dr · ÂðrÞ; ð2Þ

changing the hopping terms but leaving the interaction part
Hint invariant. −e is the electron charge and c the speed
of light.
Inherited from the original minimal coupling, the Peierls

substitution entails an associated gauge invariance. It is best
described by replacing ÂðrÞ with a classical uniform and
time-independent vector potential A0. Equation (2) becomes
λ ¼ A0 · ðRj;β þ δ − Rj;αÞ. The resulting phase factor is
readily absorbed by the gauge transform cRj;α

→
eieA0·Rj;α=ccRj;α

and Eq. (1) is recovered. This is expected
on physical ground as a constant vector potential is asso-
ciated with vanishing electric and magnetic fields. As
discussed below, this gauge invariance ensures the TRK
sum rule. The Bloch Hamiltonian is modified as
hαβðk − eA0=cÞ, i.e., a simple momentum shift removes
A0. The momentum shift is harmless as the Brillouin zone is
a compact space, in contrast with continuous or k · p
approximations which often violate sum rules and incor-
rectly predict superradiance. The generic lattice model (1)
offers a powerful antidote to enforce gauge invariance and
protect sum rules.
We are interested at the onset of superradiance

and therefore expand the phase factors (2) to second order
to obtain the Hamiltonian H0ðAÞ ¼ H0 þHA þHA2 with

HA ¼ e
c

X
q

ÂðqÞ · Jpð−qÞ; ð3aÞ

HA2 ¼ −
e2

2c2
X
q1;q2

Âiðq1ÞT i;jð−q1;−q2ÞÂjðq2Þ: ð3bÞ

We thereby introduce the paramagnetic current JpðqÞ and
the diamagnetic tensor T i;jðq1;q2Þ. As detailed in the
Supplemental Material (SM) [44], they can be written solely
in terms of the Bloch Hamiltonian hαβðkÞ. Together, they
define the current operator

JiðqÞ ¼ Jp;iðqÞ −
e
c

X
q0;j

T i;jðq;−q0ÞÂjðq0Þ; ð4Þ

where i ¼ x, y, z (x, y) in three (two) dimensions. For
a classical potential vector AðrÞ, the average current
j ¼ hJi=V follows from linear response theory

jiðω;qÞ ¼
e
c

X
j

Qi;jðω;qÞAjðω;qÞ; ð5Þ

with the current susceptibility Qi;jðω;qÞ. The above-men-
tioned gauge invariance implies that the current response
Eq. (5) to the uniform field A0 must vanish in the static limit,
and therefore

lim
q→0

Qi;jð0; qÞ ¼ 0: ð6Þ

This is the TRK sum rule expressing the cancellation
of paramagnetic and diamagnetic responses at long
wavelength.
Condition for superradiance.—We turn to the electro-

magnetic cavity in which, for the sake of simplicity, we
keep only two modes with wave vectors q and −q. The
potential vector takes the form

ÂðrÞ ¼ Āueiq·rðaq þ a†−qÞ þ H:c:; ð7Þ

where the direction is determined by the unit vector u and Ā
sets the strength of light-matter interaction. The light-
matter Hamiltonian is then Hel þHA þHA2 þHcav with
the cavity energy Hcav ¼ ℏωqða†qaq þ a†−qa−qÞ. In the
thermodynamic limit, the light-matter ground state factor-
izes and one can show that the photon state is a coherent
state. This justifies the replacement of bosonic operators
a�q → α�q by classical fields which must be chosen to
minimize the ground state energy. We use linear response
theory and the stiffness theorem to arrive at the ground state
energy to leading order in α�q

EðαqÞ − Eð0Þ ¼ N q½ℏωq þ 2γ2QT=Lð0; qÞ�jαqj2; ð8Þ

with α−q ¼ α�q, γ ¼ ejĀj=c and T=L depends on whether
Eq. (7) is a transverse (q · u ¼ 0) or longitudinal field. N q
is an intensive positive factor given in the SM [44]. EðαqÞ is
the ground state energy with a coherent state of photons of
amplitude αq (and α−q), where jαqj2 scales linearly with the
system size. When αq ≠ 0, it describes the superradiant
state and the phase transition occurs when the term inside
the bracket in Eq. (8) changes sign. The derivation leading
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to Eq. (8), detailed in the SM [44], follows from Ref. [40]
but extends it to finite q. In the uniform case q ¼ 0, the
TRK sum (6) and Eq. (8) prove the so-called no-go theorem
[40] which prevents any photon condensation (super-
radiance) to a uniform cavity field.
However, Eq. (8) at finite q goes beyond the TRK sum

rule and predicts a superradiant state if the following
condition is achieved

QTð0; qÞ < −
ℏωqc2

2e2jĀj2 : ð9Þ

This criterion can alternatively be obtained from computing
the pole of the photon Green’s function at vanishing
frequency. The longitudinal response function behaves quite
differently from the transverse one at finite q. We identify a
second sum rule, called the f-sum rule (see SM [44]),

QLð0; qÞ ¼ 0; ð10Þ

stemming from charge conservation. Inserting Eq. (10) into
the ground state energy (8), we find no phase transition to a
longitudinal potential vector, fully excluding superradiance in
one-dimensional electron lattice systems, ladder models aside.
Our analysis has shown that the transverse current

susceptibility QT determines the onset of superradiance.
For noninteracting electrons, we consider the eigenstates
jk; ni of the Bloch Hamiltonian hαβðkÞ with energies ϵk;n.
For convenience, we label the states with n < 0 (> 0) for
negative (positive) energies. We introduce the notation
jk; qin;m for an electron-hole excitation on top of the ground
state j0i, where the hole (electron) is in state jk; ni
(jkþ q; mi). At zero temperature, the susceptibility is
given by QTðqÞ ¼ KTðqÞ − uihT i;j

q;−qiuj=V with the para-
magnetic response (d is the space dimension)

KTð0; qÞ ¼
Z
BZ

ddk
ð2πÞd

X
n<0<m

X
�

jgn;mk;�qj2
ϵk;n − ϵk�q;m

; ð11Þ

where the denominator is the energy of the electron-hole
excitation. The numerator depends on the dipole couplings
gn;mk;q ¼ h0jJTq jk; qin;m, which selects the symmetry of the
electronic states coupled by the light-matter interaction.
Interestingly, the corresponding dipole for the longitudinal
response vanishes with ϵk;n − ϵkþq;m, and the paramagnetic
contribution to the current-current susceptibility cancels the
diamagnetic term. The absence of such cancellation for the
transverse part is crucial and opens the way for a diverging
paramagnetic response (11). There are various ways to
obtain a singularity, either by having two lines of points in
the Fermi surface connected by a single momentum q
(nesting) in two dimensions, or if the density of states at a
Fermi point becomes infinite, such as quadratic band
touching or Landau level crossing [41]. Since the para-
magnetic susceptibility KT is negative, its divergence

signals a superradiant phase transition, no matter how
weak the light-matter interaction is, since the criterion
(9) is always satisfied. But this singularity is by no means
necessary to the superradiance. Indeed, Eq. (8) implies that
the superradiant ground state is energetically favored as
soon as Eq. (9) is satisfied. In other words, the normal
ground state is unstable when the light-matter energy gain
is larger than the energy cost of generating a finite density
of photons with wave vector q.
Superradiant phase.—We illustrate the above criterion

(9) for superradiance with concrete examples of tight-
binding models. In the following, we proceed in two steps.
First, we apply the linear response theory to look for the
superradiant instability. Then, in a second stage, we
characterize the properties of the electronic model in the
superradiant phase.
The first model that we consider is the textbook two-

dimensional square lattice with nearest-neighbor hopping.
The Bloch Hamiltonian is hðkÞ ¼ −tðcos kx þ cos kyÞ,
with unit lattice spacing for simplicity. At half-filling,
the electronic ground state exhibits a square Fermi surface
shown as a solid line in Fig. 1, and a nesting between two
segments of the Fermi surface by the wave vector
q� ¼ ðπ; πÞ. The whole band structure can be arbitrarily
separated into a valence band and a conduction band
depending on the sign of ϵk. Following the above steps

(a)

(b)

FIG. 1. (a) Current susceptibilities for q along high-symmetry
lines. The longitudinal (black line) satisfies Eq. (10), the trans-
verse develops a peak as the temperature is lowered. Inset:
alternating cavity field configuration in the superradiant phase.
(b) Representative spectrum in the superradiant phase with the
four Dirac points and the nesting vector q� ¼ ðπ; πÞ. The original
Fermi surface is indicated by a solid black line.
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starting with the Peierls substitution, one arrives at Eq. (11)
for the transverse and longitudinal responses, with the
dipole elements

gT=Lk;q� ¼ −i
ffiffiffi
2

p
t

π
ðcos kx ∓ cos kyÞ; ð12Þ

coupling the valence and conduction bands. The nesting by
q�, represented in Fig. 1(b), implies a divergence of
Eq. (11) when k approaches one side of the Fermi surface
while the transverse dipole (12) remains finite. To the
contrary, the longitudinal dipole vanishes ensuring a finite
paramagnetic response. This is illustrated in Fig. 1(a) where
the divergence in the transverse response develops at low
temperature at the nesting vector q� (M point). Extracting

the divergence, we obtain the critical temperature Tc ∼
te−ðπ

2=4Þ
ffiffiffiffiffiffiffiffiffi
ℏωq=t

p
ðℏ=aγÞ (a is the lattice spacing) below which

the superradiant phase is energetically favorable. The
occupied superradiant bosonic mode is not uniform in
space but spatially modulated at the nesting wave vector q�.
Next, we investigate the superradiant phase for the

square lattice model. There is an absence of light-matter
entanglement in the thermodynamic limit (see SM [44])
and we assume a photon coherent state. Viewed from the
electrons, we obtain an effective Hamiltonian (1) with
classical phases dressing the hoppings, similar to piercing a
nonuniform magnetic flux through the lattice. For
q� ¼ ðπ; πÞ, the corresponding flux configuration alternates
between plaquettes as �ϕ, see Fig. 1, thus breaking time-
reversal symmetry. With this flux, the new unit cell has
length

ffiffiffi
2

p
, along the diagonals of the original square

lattice, and contains two inequivalent sites A and B [53].
The new Bloch Hamiltonian takes the form

hðk;AÞ ¼ −t
�

0 dAB
d�AB 0

�
; ð13Þ

with the matrix element dAB ¼ eiϕ
0
cos kx þ e−iϕ

0
cos ky,

ϕ0 ¼ ϕ=4. The alternating flux �ϕ hence opens a gap
almost everywhere on the Fermi surface except at four
C4z-related points, kx ¼ �π=2, ky ¼ �π=2, from which
four Dirac cones emerge. The band spectrum is represented
in Fig. 1. Like in graphene, the C2zT symmetry,
σxh�ðkÞσx ¼ hðkÞ, imposes a vanishing Berry curvature
and protects the Dirac points [54–56] characterized by the
Berry phases �π (C4z reversing the Berry phase). The
similarities with graphene extend to zero-energy boundary
modes [57,58], which develop in graphene for zigzag edges
while they are absent at armchair termination [59]. Here,
we find a collection of zero-energy states when the square
lattice has a termination along the diagonals of the original
lattice, but not for edges parallel to the x or y direction.
The second model we discuss consists of electrons

moving on a honeycomb with a quadratic band touching

dispersion. The Bloch Hamiltonian incorporates nearest-
and third-nearest-neighbor hoppings [60,61]. It takes the
form of Eq. (13) with dAB ¼ P

3
j¼1 e

ik·Δj þ r
P

3
j¼1 e

−2ik·Δj ,
where the three vectors Δj connect nearest neighbors on the
lattice. r ¼ 0 is the standard model describing electronic
bands in graphene. It possesses two inequivalent Dirac
cones centered at the K and K0 points with Berry phases
�π. Additional Dirac cones enter the Brillouin zone for
nonzero r and fuse with the original ones at r ¼ 1=2
resulting in dAB ¼ − 9

8
ðδkx � iδkyÞ2 in the vicinity of the K

(K0) point. They give rise to two parabolic band contacts
with Berry phases∓ 2π at K and K0. At half filling, setting
q� to be the vector connecting K and K0, we find a finite
transverse dipole element

jgTK;q� j ¼
9

ffiffiffi
3

p

8π
t; ð14Þ

in Eq. (11), resulting in a divergence in the zero-
temperature current susceptibility QT, for details we refer
to the SM [44], and therefore to a superradiant phase at
arbitrary weak light-matter coupling. In this case, the
divergence is produced by the parabolic form of the energy
difference in Eq. (11) (and not by line nesting) while the
Fermi surface reduces to the two points K and K0. As
expected, the longitudinal dipole element vanishes at
ðK; q�Þ, protected by the f-sum rule (10).
The superradiant state is again described by a classical

photon field modulated at q�, with six sites per unit cell. As
shown in Fig. 2(a), the photonic condensate opens a gap at

0

-3

-2

-1

0

E
/t

-

(a)

(b)

FIG. 2. (a) Band spectrum (three lowest) of the superradiant
state with nonzero Chern numbers obtained for Ā ¼ 0.3, inset:
reciprocal space. (b) Spectrum obtained in a ribbon geometry for
Ā ¼ 1.5. Black lines correspond to bulk states while the (non-)
topologically protected edge states are shown in (blue) red.
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the K and K0 points and time-reversal symmetry breaking
results in topological bands with nonzero Chern numbers
and therefore in a topological superradiant phase. The
model also displays a chiral symmetry anticommuting with
the Bloch Hamiltonian [62] which imposes bands of
opposite energies to have the same Chern number. For
ribbon boundary conditions (periodic boundary conditions
along y, while open along the other principal direction) the
superradiant phase presents topologically protected 1D
edge states, displayed in Fig. 2(b), crossing the band
gap between bands 2 and 3 characterized by opposite
Chern numbers. Such “superradiant edge state” could be
directly measured by light probe [63,64].
Conclusions and outlook.—We established a framework

for finding superradiant phase transitions in electronic
systems. The divergence of the transverse current suscep-
tibility is sufficient but not necessary to obtain super-
radiance and a strong enough light-matter coupling also
works provided it is simply negative. This condition is
verified at finite wave vector q in solid-state systems where
the paramagnetic contribution to the current-current sus-
ceptibility prevails over the diamagnetic one that always
disfavors photon condensation. The resulting superradiant
ground state is characterized by a spatially modulated
orbital ferromagnetic order, and possesses nontrivial topo-
logical properties. We also envision a superradiant phase
transition close to magic angles [65–67] in twisted bilayer
graphene, where the scenario of parabolic band touching is
very similar to one discussed here [68,69].

We would like to acknowledge fruitful discussions and
correspondences with Marcello Andolina, Denis Basko,
Cristiano Ciuti, Mark Goerbig, and Marco Polini. This
work was supported by the French National Research
Agency (Project No. SIMCIRCUIT, ANR-18-CE47-
0014-01).

Note added.—Recently, we learned about the theoretical
work of Andolina et al. [70] which overlaps with the first
part of our work and reaches a similar conclusion con-
cerning the occurrence of a superradiant phase transition.
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