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We develop a two stage renormalization group which connects the continuum Hamiltonian for twisted
bilayer graphene at length scales shorter than the moire superlattice period to the Hamiltonian for the active
narrow bands only which is valid at distances much longer than the moire period. In the first stage, the
Coulomb interaction renormalizes the Fermi velocity and the interlayer tunnelings in such a way as to
suppress the ratio of the same sublattice to opposite sublatice tunneling, hence approaching the so-called
chiral limit. In the second stage, the interlayer tunneling is treated nonperturbatively. Via a progressive
numerical elimination of remote bands the relative strength of the one-particle-like dispersion and the
interactions within the active narrow band Hamiltonian is determined, thus quantifying the residual
correlations and justifying the strong coupling approach in the final step. We also calculate exactly the
exciton energy spectrum from the Coloumb interactions projected onto the renormalized narrow bands. The
resulting softening of the collective modes marks the propinquity of the enlarged (“hidden”) Uð4Þ ×Uð4Þ
symmetry in the magic angle twisted bilayer graphene.
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It has been known for some time that electron-electron
Coulomb interactions cause an upward renormalization of
the Fermi velocity, vF, upon approaching the charge
neutrality point (CNP) of monolayer graphene [1–7].
Such momentum dependent steepening of the Dirac cone
depends on the graphene’s dielectric environment and is
weaker for stronger dielectrics, but even for hexagonal
boron nitride (HBN) encapsulated devices the increase can
be [2] ∼10%–15%. Such a small change in vF would be of
limited interest if it weren’t for the recent explosion of
research into the magic angle [8] twisted bilayer graphene
(TBG) [9–77], where the experiments show extremely
strong sensitivity of the correlated electron phenomena
to the twist angle θ. Even a ∼5% change of θ away from the
optimal (magic) value has been reported to produce at least
a factor of 2 reduction [23,24] of the superconducting Tc,
with even stronger suppression of the correlated insulator
states [23].
The strong band structure sensitivity is due to the

dependence on the dimensionless parameters w0;1=vFkθ,
where w0 and w1 parameterize the interlayer tunneling
energy in the AA and AB regions, respectively, and where
the momentum displacement of the Dirac cones is given by
kθ ¼ 2kD sin θ

2
, kD ¼ 4π=3a0, a0 ≈ 0.246 nm (in ℏ ¼ 1

units) [8]. Therefore, at a fixed magic θ, even a ∼10%
difference in vF alone would be sufficient to detune the
system from the optimal flat band condition. As such, if
neither of wj renormalized due to Coulomb interactions,
but only vF did, the magic angle condition would depend

on whether the TBG was encapsulated in HBN, or only
from one side, because the different dielectric environments
would produce a different strength of Coulomb inter-
actions, the former with a dielectric constant [48,78]
ϵHBN ≈ 4.4 and the latter with ϵ ≈ ð1þ ϵHBNÞ=2 ¼ 2.7.
The difference in the vF, and therefore the magic angle,
would then be within the sensitivity of the correlated
insulating states; no such dependence of the magic angle
on the partial or complete encapsulation has been reported.
Here we develop a renormalization group (RG) approach

to the Coulomb interactions in the twisted bilayer graphene
and show that w1 renormalizes in precisely such a way as to
compensate for the growth of vF making the magic angle
largely insensitive to the effective dielectric constant ϵ.
Interestingly, we find that w0 does not renormalize due to
Coulomb interactions. Therefore, the ratio w0=w1 shrinks
and the system flows closer to the chiral limit described by
Tarnopolsky, Kruchkov, and Vishvanath [47]. As illustrated
in Fig. 1(c), the flow from a high energy (with the UV
cutoff Ec), where the Coulomb interaction and w0;1 are
perturbative, to a low energy of the narrow bands where
neither is, crosses over to a regime where the effects of w0;1
become nonperturbative, but the Coulomb interaction is
still perturbative. This happens at the energy scale
E�
c ∼Oðw1Þ, marking the beginning of the second stage

of our RG; the band structure scaling collapse in Fig. 2
shows that the second stage seamlessly connects to the first
stage even if E�

c changes. In the second stage, we numeri-
cally integrate out the two most remote bands, one above
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and one below the CNP, rotate the remaining states to
diagonalize the renormalized kinetic energy, and reexpress
the interaction in terms of the rotated states, iterating the
procedure until we reach the narrow bands. If the resulting
narrow bands’ bandwidth (or, more precisely the root mean
square of the renormalized kinetic energy dispersion) is
much smaller than the interaction (or more precisely, the
particle-hole charge gap), as we find it is near the magic
angle, the final step is treated nonperturbatively in the
Coulomb interaction, i.e., by solving the interaction-only
problem (strong coupling limit) and then treating the
renormalized kinetic energy terms as a perturbation.
The condition w0 ¼ 0, and thus the chiral limit

[47,79,80], was previously thought to be unrealistic and
the value w0=w1 ∼ 0.8 was taken from density functional
theory-like calculations [28,50,81]. Our results [Eqs. (17)
and (18)] show that for the Coulomb interacting system, the
chiral limit becomes exact near the CNP in the limit
Ec=w1 → ∞, albeit approaching logarithmically. This
has important consequences for the effective residual
interaction in the narrow band, because of the increased
sublattice polarization of the narrow band wave functions
[67]. We find additional enhancement of the sublattice
polarization after the second stage, as well as steepening of
the Wilson loop eigenvalues [42], indicating an additional
approach to the chiral limit during the second stage RG.

The dominant part of the Coulomb interaction Hamiltonian
projected onto perfectly sublattice polarized chiral limit
narrow bands is invariant under a larger symmetry,
Uð4Þ ×Uð4Þ, than for w0=w1 ≠ 0, Uð4Þ, when particle-
hole (p-h) symmetry [42] is exact [67]. This symmetry
enhancement enlarges the manifold of nearly degenerate
correlated states [67]. Our exact calculation of the collec-
tive mode spectrum in the strong coupling limit indeed
shows not only four Goldstone bosons associated with the
Uð4Þ spin-valley ferromagnetism [48,67], but also a soft-
ening of four additional collective modes, indicating the
approach to the Uð4Þ ×Uð4Þ ferromagnet [67] with its
eight Goldstone bosons (see Fig. 3).
We begin with the Hamiltonian H ¼ Hkin þ V int where

Hkin ¼
Z

d2rχ†σðrÞ
�
ĤBM 0

0 Ĥ�
BM

�
χσðrÞ ð1Þ

V int ¼
1

2

Z
d2rd2r0Vðr − r0Þχ†σðrÞχ†σ0 ðr0Þχσ0 ðr0ÞχσðrÞ ð2Þ

where χ†σ ¼ ðψ†
σ;ϕ†

σÞ creates an electron in valley K (K0)
for its upper (lower) component, and the repeated
spin-1

2
indices σ are summed. The Bistritzer-MacDonald [8]

(BM) continuum Hamiltonian [28,29,40,42,47] for twist
angle θ is

(a)

(b) (c)

FIG. 1. (a) Moire lattice with lattice spacing Lm. (b) Moire
Brillouin zone. (c) Schematic illustration of the two stage RG
procedure for arriving at the strong coupling limit. In the stage 1,
both the Coulomb interaction and the moire potential are
perturbative, in the stage 2 only the Couloumb interaction is.
In the final step, when only the narrow bands (red) remain, the
interaction is the largest scale.

(a) (b)

FIG. 2. (a) Low energy spectra after nc − 5 steps of the stage 2
RG for nc ¼ 72 (purple), 40 (black), 30 (red), 20 (blue). At nc,
each starts with the same Fermi velocity, vF, in the BM model at
w1=vFkθ ¼ 0.5, but with w0=w1 ¼ 0.83 (purple), 0.805 (black),
0.787 (red), and 0.768 (blue). The values are chosen based on the
dielectric constant ϵ ¼ 4.4 and scaling in Eq. (18) and the cutoff
energies set by the nth band maxima at nc ¼ 72. (b) Results of the
panel (a) rescaled by vðnÞF ¼ vF=½1þ ðe2=4ϵvFÞ lnðEc=E�

cÞ� for
Ec set by the band maximum at nc ¼ 72, demonstrating the
scaling collapse and thus independence of the results of stage 2
RG on E�

c.
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ĤBM ¼
� vFσθ

2
· p TðrÞ

T†ðrÞ vFσ−θ
2
· p

�
; ð3Þ

where the twisted Pauli matrices acting on the sublattice
indices are σθ

2
¼ e−

i
4
θσzðσx; σyÞei

4
θσz , q1 ¼ kθð0;−1Þ,

q2;3 ¼ kθ½ð�
ffiffiffi
3

p
=2Þ; ð1=2Þ�. The interlayer hopping

TðrÞ ¼ P
3
j¼1 Tje−iqj·r is controlled by two parameters

w0;1 via

Tjþ1 ¼ w012 þ w1

�
cos

�
2π

3
j

�
σx þ sin

�
2π

3
j

�
σy

�
; ð4Þ

where 1n is an n × n unit matrix. ĤBM acts on its
eigenfunctions

Ψn;kðrÞ ¼
X
g

� an;gðkÞ
bn;gðkÞeiq1·r

�
eik·reig·r; ð5Þ

where g ¼ m1g1 þm2g2 for integer m1;2 and
g1;2 ¼ q2;3 − q1. The slow fields at the two valleys
K=K0 are expanded in the “band” basis fermion annihi-
lation operators dσ;K=K0;n;k with crystal momentum k in the
first moire Brillouin zone, and the band index n as

χσðrÞ ¼
�
ψσðrÞ
ϕσðrÞ

�
¼

X
nk

� Ψn;kðrÞdσ;K;n;k

Ψ�
n;kðrÞdσ;K0;n;−k−q1

�
: ð6Þ

It will be helpful for us to think aboutHkin as a lowest order
gradient expansion of a continuum field theory [40], with
coupling constants that can flow due to V int under the first
stage of the RG.
As pointed out in Ref. [42], if the small angle rotation in

σθ=2 is ignored, then ĤBM enjoys a p-h symmetry for any
value of w0 and w1,

−iμyσxĤ�
BMσxiμy ¼ −ĤBM; ð7Þ

in that if Ψn;kðrÞ is an eigenstate of ĤBM at k with
eigenvalue ϵn;k, then −iμyσxΨ�

n;kðrÞ is an eigenstate at
−k − q1 with eigenvalue −ϵn;k. In what follows, we will
neglect the small p-h asymmetric term which is 2 orders of
magnitude smaller than w0;1 and which we analyze in
Ref. [82], and perform our RG assuming this approximate
symmetry is present.
Up to an overall shift of the chemical potential, we can

rewrite V int as

V int ¼
1

2

Z
d2rd2r0Vðr − r0ÞδρðrÞδρðr0Þ; ð8Þ

δρðrÞ ¼ χ†σðrÞχσðrÞ −
1

2
fχ†σðrÞ; χσðrÞg: ð9Þ

For a pure Coulomb interaction VðrÞ ¼ e2=ϵr. The
Hamiltonian in Eqs. (1) and (2) is defined at some high
energy cutoff �Ec which corresponds to a maximal value
of the band index nc in our expansion. The parameters vF,
w0, and w1 should also be thought of as being fixed by a
measurement at Ec. The last term in Eq. (9) is usually
ignored, but for our RG, it will be helpful to express it as
1
2
fχ†σðrÞ; χσðrÞg ¼

ρ̄Ec
ðrÞ ¼ 2

X
jϵnkj≤Ec

Ψ�
n;kðrÞΨn;kðrÞ: ð10Þ

In the first stage, we split χσðrÞ ¼ χ>σ ðrÞ þ χ<σ ðrÞ and
integrate out the fast modes χ>σ ðrÞ with kinetic energy
E0
c < jϵn;kj ≤ Ec, such that E0

c ≫ w0;1. In this regime, the
V int can be treated perturbatively. Its contribution to the
slow mode Hamiltonian is then

V int →
1

2

Z
d2rd2r0Vðr− r0Þδρ<ðrÞδρ<ðr0Þ

þ 1

2

Z
d2rd2r0Vðr− r0Þχ<σ †ðrÞδF ðr; r0Þχ<σ ðr0Þ; ð11Þ

where δρ<ðrÞ ¼ χ<σ
†ðrÞχ<σ ðrÞ − ρ̄E0

c
ðrÞ which follows from

the p-h symmetry. The correction to the ĤBM comes from

FIG. 3. The strong coupling exciton spectrum after stage 1 and
2 RG, starting the stage 1 with Ec ¼ 18.2w1 corresponding to
2 eV for w1 ¼ 110 meV, w1=ðvFkθÞ ¼ 0.586 (magic angle), and
the initial w0=w1 ¼ 0.83. The branch that becomes gapless at Γ
corresponds to four Goldstone modes of the Uð4Þ spin-valley
ferromagnet with quadratic dispersion. Another branch, empha-
sized by the arrow, softens during the RG, eventually also
becoming gapless in the chiral limit, with a total of eight
Goldstone modes of the Uð4Þ × Uð4Þ ferromagnet. The red
curve is the onset of the particle-hole continuum.
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δF ðr; r0Þ ¼
X

E0
c<jϵnkj≤Ec

signðϵnkÞ
�
fn;kðr; r0Þ 0

0 f�n;kðr; r0Þ
�
;

ð12Þ

where fn;kðr; r0Þ ¼ Ψn;kðrÞΨ†
n;kðr0Þ. We can now write

X
E0
c<jϵnkj≤Ec

signðϵnkÞfn;kðr; r0Þ ¼
I
C

dz
2πi

hrjĜðzÞjr0i ð13Þ

where ĜðzÞ ¼ ðz − ĤBMÞ−1, and the contour C encloses the
z-plane real line segment ð−Ec;−E0

cÞ in the clockwise,
and segment ðE0

c; EcÞ in the counterclockwise, sense. As
long as E0

c ≫ w0;1, the dominant contribution to the
contour integral can be found by replacing ĜðzÞ≈
Ĝ0ðzÞ þ Ĝ0ðzÞT̂Ĝ0ðzÞ þOðw2

0;1=E
02
cÞ. For small Ec − E0

c,
we thus find that in the first RG stage [82],

dvF
d lnEc

¼ −
e2

4ϵ
; ð14Þ

dw0

d lnEc
¼ 0; ð15Þ

dw1

d lnEc
¼ −w1

e2

4ϵvF
; ð16Þ

and e2, being the prefactor of a nonanalytic term, does not
renormalize when high energy modes are eliminated [83].
Integrating the above equations, i.e., progressively reducing
the cutoff to E�

c gives

w1ðE�
cÞ

vFðE�
cÞ

¼ w1ðEcÞ
vFðEcÞ

; ð17Þ

w0ðE�
cÞ

w1ðE�
cÞ

¼ w0ðEcÞ
w1ðEcÞ

��
1þ e2

4ϵvFðEcÞ
ln
Ec

E�
c

�
: ð18Þ

Equation (17) implies that the magic angle condition is
largely insensitive to the renormalization. Equation (18)
shows that even if we start away from the chiral limit [47] at
the UV scale Ec, at a lower energy scale E�

c we approach it.
Next, we combine this stage 1 RG with the nonperturbative
(in moire potential) stage 2 numerical RG at 6w1 ≳ E�

c, but
we stress that results are insensitive to the choice of E�

c as
long as w1;0=E�

c is small so that stage 1 is under control.
The scaling collapse of the band structure shown in the
Fig. 2 demonstrates this insensitivity for w1=vFkθ ¼ 0.5,
e2=vF ¼ 2.2, and ϵ ¼ 4.4 with several choices of nc. We
also find an increase of the sublattice polarization and
steepening of the Wilson loops along the RG evolution
[82], indicating a further approach of the chiral limit during
stage 2.
Note that at each step of our procedure we rediagonalize

the BM-like model in the subspace of the low energy bands

corrected by V int. We also reexpress the V int in Eq. (8) in
terms of the current (rotated) eigenstates of the BM model
below the running energy cutoff, and because ρ̄E0

c
ðrÞ is

invariant under the basis rotation, the p-h symmetry is
explicitly preserved. After the final step, we are thus left
with two renormalized narrow bands per valley, and V int
containing ρðrÞ and ρ̄0ðrÞ both expressed in terms of the
final renormalized wave functions Ψ̃n�;kðrÞ, with the upper
and lower bands denoted by nþ and n−, respectively.
Because the p-h symmetry is preserved during this pro-
cedure, we can choose Ψ̃n−;kðrÞ ¼ −iμyσxΨ̃�

nþ;−k−q1ðrÞ.
Substitution of such field operators Eq. (6) gives
ρðrÞ ¼ P

kk0
P

σ¼↑;↓ D
†
kσPkk0 ðrÞDk0σ , where within the

narrow band D†
kσ¼ðd†K;nþ;kσ;d

†
K;n−;kσ;d

†
K0;nþ;kσ;d

†
K0;n−;kσÞ.

Suppressing kk0 and r dependence, P ¼ b014 þ b1τ3σ̃1þ
b212σ̃2 þ b3τ3σ̃3, thus commuting with all 16 generators of
spin-valley Uð4Þ symmetry [67] 14sμ, τ312sμ, τ2σ̃2sμ,
τ1σ̃2sμ, where μ ¼ 0, 1, 2, 3 and τ acts on valley, σ̃ on
band, and s on spin components (s0 ¼ 12).
If a state jΩi is annihilated by δρðrÞ for all r, then it is a

ground state at the strong coupling because V int is positive
definite [48,67]. Moreover, any state obtained by a
global Uð4Þ rotation is also a ground state, and, at the
CNP, can be obtained from a fully filled valley polarized
state [48,67]. The exact n-body excitations above any
one ground state can also be obtained by solving an
(n − 1)-body problem because V intXjΩi ¼ 1

2

R
d2rd2r0

Vðr − r0Þ[δρðrÞ; ½δρðr0Þ; X�]jΩi and because the center of
mass momentum is conserved. Therefore, solving the
operator eigenequation

EX ¼ 1

2

Z
d2rd2r0Vðr − r0Þ[δρðrÞ; ½δρðr0Þ; X�]; ð19Þ

provides the exact excitation states in the strong coupling
limit. Equation (19) can be readily solved for a single
particle excitation and we show the result in Ref. [82]. Here
we focus on the charge neutral excitations (excitons)
X ¼ P

mm0k f
αβ
mm0kðqÞd†αm;kdβm0;ðk−qÞ mod g, with spin and

valley labels α, β, by finding the eigenfunctions fαβmm0kðqÞ.
Because of the spin-valley Uð4Þ invariance of these
equations, it is sufficient to solve for one spin and valley
projection, the rest can be obtained by the symmetry. The
numerically obtained exciton spectrum at the magic angle
is shown in Fig. 3 for the center of mass momentum q along
the path shown in Fig. 1(b). The quadratically vanishing
dispersion of the lowest branch corresponds to the four
Uð4Þ ferromagnetic Goldstone bosons [84]. Under the RG
a second set of four modes softens. This corresponds
to approaching the (“hidden”) Uð4Þ ×Uð4Þ invariant
chiral limit [67] with its eight Goldstone bosons.
Their gap is a measure of the Uð4Þ × Uð4Þ anisotropy
terms and for the parameters in the Fig. 3 this gap is
ΔUð4Þ×Uð4Þ ≈ 0.2e2=ϵLm ∼ 5 meV; the gap vanishes at the
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chiral limit. Note that the modes disperse despite a
complete absence of kinetic energy terms due to the
nonlocal structure of the projected density operators [48].
The Hkin breaks the spin-valley Uð4Þ symmetry down to

Uð2Þ ×Uð2Þ and causes splitting of the degenerate ground
state manifold. We can obtain an upper bound on the
resulting anisotropy terms from second order perturbation
in (renormalized) kinetic energy (i.e., “superexchange”) by
replacing the energy of the excited states at Γ with the
lowest energy exciton that has a nonzero overlap on the
kinetic energy operator (Emin

ph ≈ 2e2=ϵLm for Fig. 3). For a
spin independent valley rotation, parameterized by three
Euler angles, e

i
2
ατ314e

i
2
ωτ2σ212e

i
2
γτ314 we find that the energy

splitting per unit cell, ΔUð4Þ, is bounded from above by
−ðsin2 ωÞ4 R d2kϵ2nþ;k=ðABZEmin

ph Þ. The lowest energy state
for such a rotation is the Kramers intervalley coherent state
[67] at ω ¼ π

2
. For the parameters in Fig. 3, we find that

ΔUð4Þ < 6.7 × 10−3e2=ϵLm ∼ 0.17 meV, justifying the
strong coupling approach.
The theory presented here can be extended to include the

RPA effects and the p-h asymmetry, which will be
important for any detailed quantitative comparison
with experiments. Nevertheless, the Coulomb RG
induced softening of the hidden symmetry collective
modes, whose natural energy scale would normally be
∼e2=ϵLm ∼ 25 meV, suggests that they may not be frozen
out even at ∼50 K. Finally, our results offer a significant
shift of perspective in that the chiral limit [47]—previously
considered unphysical—gains the status of an attractive
mid-IR RG fixed point when Ec=w1 → ∞.
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