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The S ¼ 1=2 square-lattice J-Q model hosts a deconfined quantum phase transition between
antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations
of this model—a term projecting staggered singlets, as well as a modulation of the J terms forming
alternating “staircases” of strong and weak couplings. The first deformation preserves all lattice
symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second
relevant field, likely by producing topological defects. The second deformation induces helical valence-
bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point—the
end point of the helical phase and also the end point of a line of first-order transitions. The helical-
antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings
extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent
bound from the conformal-bootstrap method.
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The deconfined quantum-critical point (DQCP) is a
paradigmatic “beyond Landau” quantum phase transition
in two dimensions [1]. Building on field theories for
quantum magnets [2–6] and stimulated by intriguing
numerical simulations [7,8], the DQCP proposal posits
that the transition between an antiferromagnetic (AFM)
ground state and a valence-bond solid (VBS, where singlets
condense on groups of two or more spins) is continuous
and described by spinons coupled to a U(1) gauge field
without topological defects. With the symmetry of the
spinons extended from SU(2) to SUðNÞ, the proposed
CPN−1 field theory can be solved for N → ∞. In violation
of the Landau rules, which prescribe a first-order transition,
the critical exponents including 1=N corrections agree
remarkably well [9] with simulations [10,11] of lattice
models with AFM-VBS transitions for moderately large N.
A contentious aspect of the DQCP scenario is the

suggestion that the continuous transition persists down to
N ¼ 2. This conjecture [1,12] found early support in
quantumMonte Carlo (QMC) simulations of the J-Qmodel,
in which the S ¼ 1=2Heisenberg model with exchange J on
the square lattice is supplemented by four-spin [13] or six-
spin [14] terms Q, illustrated in Figs. 1(a) and 1(b), that
induce correlated singlets and lead to VBS order for large
Q=J. Many QMC studies of these and other variants of the
J-Q model [15–26], as well as related 3D classical loop
models [27,28], have characterized the signatures of the
DQCP, including an emergent U(1) symmetry of the VBS
fluctuations [13,16,19,27]. However, anomalous scaling
behaviors have been interpreted by some as precursors to

a first-order transition [16,21,29]. Attempts to explain the
observations as a weakly first-order “walking” transition
invoke a nonunitary conformal field theory (CFT) with a
DQCP slightly outside the accessible model space, e.g., in
dimensionality different from two [30–35]. In this scenario,
the transition reflects the properties of the inaccessible fixed
point but eventually, for large lattices, flows away from it. No
concrete predictions have been put forward, however, and
concurrently further QMC studies have provided compelling
evidence of a continuous transition [36].
A puzzling issue is that the critical correlation-length

exponent ν ≈ 0.45 [24,28,36] violates a bound ν > 0.51
from the CFT bootstrap [37].We here identify a loophole in
this bound and also discover a previously unknown helical
valence-bond (HVB) phase. We consider two deforma-
tions of the J-Q model and demonstrate that they are

(a) (b) (c) (d)

FIG. 1. The multispin columnar Q interactions are products of
two (Q2) in (a) or three (Q3) in (b) singlet projectors. (c) The Z
perturbation consists of all four-spin interactions ðSi · SjÞðSk · SlÞ
with the site pairs ij and kl forming two staggered bonds, as
shown, as well as the π=2 rotated cases. (d) Staircase exchange
pattern W, with thick blue and thin black links representing
Jð1� hÞSi · Sj.

PHYSICAL REVIEW LETTERS 125, 257204 (2020)

0031-9007=20=125(25)=257204(7) 257204-1 © 2020 American Physical Society

https://orcid.org/0000-0001-6959-6963
https://orcid.org/0000-0003-1327-9322
https://orcid.org/0000-0002-5638-4619
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.257204&domain=pdf&date_stamp=2020-12-17
https://doi.org/10.1103/PhysRevLett.125.257204
https://doi.org/10.1103/PhysRevLett.125.257204
https://doi.org/10.1103/PhysRevLett.125.257204
https://doi.org/10.1103/PhysRevLett.125.257204


renormalization-group (RG) relevant at the DQCP. First,
we study a four-spin term Z of staggered bond operators;
Fig. 1(c). We recently showed that strong staggered inter-
actions lead to a first-order transition [26], likely by
suppressing the emergent U(1) symmetry associated with
the DQCP [38]. UsingQMC simulations, we here show that
an infinitesimal Z perturbation is relevant and invalidates
the bootstrap ν bound, which is conditional on a single
symmetry-preserving relevant field. The second deforma-
tion is a staircase J modulation, Fig. 1(d), which is also
relevant and evolves the DQCP into a HVB phase.
Model.—We consider the J-Q2 and J-Q3 models with

exchange Jb on links b connecting nearest-neighbor sites
ib, jb. Using singlet projectors Pb ¼ Pij ¼ 1=4 − Sj · Sj,
we write the Hamiltonian on periodic lattices with N ¼ L2

spins as

H ¼ −
X2N

b¼1

JbPb −Q
X2N

p¼1

Y

fbpg
Pbp; ð1Þ

where the products have either two or three singlet projectors
in the sets fbpg, arranged as in Figs. 1(a) and 1(b).
Defining g ¼ J=ðJ þQÞ, the J-Q2 and J-Q3 models

with uniform Jb ¼ J have AFM-VBS transitions at gc ≈
0.0432 [36] and gc ≈ 0.400 [14], respectively. The DQCP
has been better characterized in the J-Q2 model [24,36],
and we use it to study the relevance of the infinitesimal
staggered bond interactions, Fig. 1(c), and staircase J
modulation, Fig. 1(d). The J-Q3 model is a more robust
VBS for large g [19] and we use it to study finite staircase
modulation. By universality, our results should apply also
to other DQCP systems.
Scaling dimensions.—To characterize the Z and W

deformations, we compute corresponding correlation func-
tions in the critical J-Q2 model. With Hc ¼ Hðg ¼ gcÞ in
Eq. (1), we write the perturbed Hamiltonian as

H ¼ Hc þ δV; V ¼
X

a

VðraÞ; ð2Þ

whereVðraÞ is a subset of terms ofV in a suitable lattice cell.
Following standard quantum criticality and RG notation, the
correlation function CVðrÞ ¼ hVðrÞVð0Þi − hVð0Þi2 at δ ¼
0 should decay as CVðrÞ ∝ r−2ΔV , where ΔV is the scaling
dimension of V. We have used a projector QMC method in
the valance-bond basis [39] to calculate CVðrÞ, using
operator cells that will be described below for the two
different perturbations. Technical details and additional
results are presented in the Supplemental Material [40].
Results for the staggered bonds, V ¼ Z, are shown in

Fig. 2(a). Here a sum of eight local terms defines the
symmetric operator ZðrÞ. The observed power-law decay
corresponds to the scaling dimension ΔZ ≈ 1.40ð2Þ, con-
siderably larger than the dimension Δ0 ≈ 0.800ð4Þ of the
previously known primary symmetric scalar operator O0

[36]. All correlations are positive and clearly represent the
spatially uniform perturbation in Eq. (2). While we can not
rigorously prove that Z contains a second primary operator
O0

0, its scaling dimension matches neither the dimensions
Δ0 þ n (n ¼ 1; 2;…) of the descendants of O0 nor those of
the order parameters OVBS and OAFM, both of which have
scaling dimensions of approximately 0.63 [19,28] (see also
the Supplemental Material [40]). Thus, we conjecture that a
second symmetric primary operator exists. In the
Supplemental Material [40] we provide further results
supporting this conclusion and show examples of other bond
products that exhibit the conventional scaling dimensionΔ0.
It is surprising that an interaction with the symmetries of

the unperturbed Hamiltonian can introduce a primary
operator not already present in the J-Q model. The most
likely scenario is that Z generates topological defects
(monopoles). The Q terms in Figs. 1(a) and 1(b) are
conducive to the emergent U(1) symmetry that is required
within the DQCP scenario and which can be traced to the
irrelevance of the quadrupled monopoles associated with
the Z4 symmetric VBS order parameter. Staggered singlets
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FIG. 2. Correlation functions at r ∝ L=2 and r ≪ L=2 of the
operators illustrated in the insets. (a) Staggered product operators
[Fig. 1(c)], where ZðrÞ is a sum of eight terms (indicated with
different colors). The blue curve is a fit to the r ¼ ðx; 0Þ data for
x ¼ L=2 ≥ 6 of the form ax−2Δ

0
0ð1þ cx−ωÞ giving Δ0

0 ¼ 1.40ð2Þ
and ω ≈ 2.0. The L ¼ 256 data (black symbols) have been
divided by 4 for visibility. The dashed lines show the leading
power law x−2Δ

0
0. (b) Staircase J modulation [Fig. 1(d)] withWðrÞ

defined on a 5 × 5-site cell with þSi · Sj and −Si · Sj on the blue
and orange links, respectively. The dashed edge links indicate
prefactors 1=2 needed for the cell summation in Eq. (2). The
correlations being negative, absolute values are shown. A fit (red
line) of the form ax−2ΔW to the r ¼ ðx;−xÞ data for x ¼ L=2 ≥ 8
gives ΔW ¼ 1.90ð2Þ. The other lines have the same slope.
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induced by the Z interaction may counteract the emergent
symmetry, as we recently showed with similar terms that,
when strong enough, render the AFM-VBS transition
clearly first order [26]. Our present results suggest that
already an infinitesimal Z causes a first-order transition.
Next, we consider the staircase J modulation, V ¼ W,

which breaks lattice symmetries. The fourfold degenerate
columnar VBS state of the model still retains its Z4

symmetry, with clocklike angular fluctuations between
neighboring states characterized by a complex order param-
eter D ¼ jDjeiϕ (as we demonstrate in Supplemental
Material [40]). The unit cell is doubled when h > 0 in
Fig. 1(d), but there is no symmetry implying destruction of
the DQCP due to Berry phase cancellations, unlike systems
such as the bilayer SUðNÞ model [53]. The W perturbation
being irrelevant in theVBSandAFMphases, it coulda priori
also be RG irrelevant at the DQCP, even though it breaks
lattice symmetries; in the Supplemental Material [40] we
show an example of an irrelevant perturbation breaking the
π=2 lattice rotation symmetry.
Figure 2(b) shows that CW defined with a 5 × 5-site cell

operator gives ΔW ¼ 1.90ð2Þ, i.e., the staircase perturba-
tion is also relevant. Thus, the DQCP is unstable, but from
the scaling dimension alone we do not know what fixed
point the system flows to for a finite W perturbation. We
will next show that a new phase opens between the VBS
and AFM phases.
HVB phase.—To characterize bond order beyond regular

patterns with small unit cells, we here first define a local
order parameter coarse grained on a cell of 3 × 3 spins,

TxðrÞ ¼ ð−1ÞrxðSzrSzrþx̂ þ SzrþŷS
z
rþx̂þŷ þ Szr−ŷS

z
rþx̂−ŷ

− SzrS
z
r−x̂ − SzrþŷS

z
r−x̂þŷ − Szr−ŷS

z
r−x̂−ŷÞ=6; ð3Þ

and TyðrÞ ¼ TxðrÞðx̂ ↔ ŷÞ. We will demonstrate that the
J −Q3 model with finite staircase modulation h > 0 hosts
a phase with helical order parameter

mðkðwx; wyÞÞ ¼
X

r

½Tx̂ðrÞ þ iTŷðrÞ�e−ir·kðwx;wyÞ; ð4Þ

where ðwx; wyÞ are positive integer winding numbers and
kðwx; wyÞ ¼ 2πðwx;−wyÞ=L. Here the minus sign on wy

applies to the choice of J pattern in Fig. 1(d), where the
stairs are directed along the ð1;−1Þ diagonal. The conven-
tional columnar VBS order parameter has w ¼ ð0; 0Þ.
We used the stochastic series expansion (SSE) QMC

method [54] at inverse temperature β ¼ L to study systems
with 0.2 ≤ h ≤ 1. We first visualize the HVB order in
Fig. 3, where a bond-centered local angle was extracted
from Tx and Ty in short h ¼ 1 simulations during which
symmetries can be broken. We observe what appears to be
long-range order along the diagonal (1, 1) direction and a
modulation in the ð1;−1Þ direction, corresponding to
winding numbers w ¼ ð1; 1Þ in Fig. 3(a) and (2, 2) in

Fig. 3(b). We find similar behaviors also at smaller h
values, and below we will present quantitative results
showing how the winding increases versus g at fixed h.
We will also demonstrate transitions of the HVB phase into
a conventional VBS phase at g1ðhÞ and an AFM phase
at g2ðhÞ > g1ðhÞ.
The following results were obtained by long SSE runs

with bona fide quantum mechanical expectation values
averaged over the lattice. We define a correlation function
CTðrÞ ¼ hTxðrÞTxð0Þi and also study the conventional spin
correlation function CSðrÞ ¼ hSzðrÞSzð0Þi. Examples of
both are shown in Fig. 4. As expected from Fig. 3, CT in the
HVB phase is modulated in the ðx;−xÞ direction, while the
correlations along ðx; xÞ are always positive and flatten out
when x → L=2. In contrast, the spin correlations decay
monotonically, faster than a power law in both directions.
Next we consider the squared magnitude of the order

parameter (4) for different winding numbers. Figure 5 shows

FIG. 3. Spatial dependence of the local VBS order parameter
from short SSE runs of L ¼ 64 systems at h ¼ 1 and g ¼ 0.25 (a)
and g ¼ 0.31 (b). The bar shows the mapping of the angle
extracted from bond-centered combinations of TxðrÞ and TyðrÞ
defined in Eq. (3). The brightness indicates the local bond
correlation jhSzi Szjij by a nonlinear map (see Supplemental
Material [40]).

FIG. 4. Bond CTðrÞ and spin CSðrÞ correlations at h ¼ 1 in the
diagonal directions of an L ¼ 128 system at g ¼ 0.25, where
wx ¼ wy ¼ 3. Negative CTðx;−xÞ values have been multiplied
by −1 and are shown with open circles.
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a scan over g for L ¼ 96. The conventional w ¼ ð0; 0Þ VBS
order successively gives way to HVB order with higher
winding, until k� reaches a maximum kmaxðgÞ and AFM
order sets in. The finite-size rounded decays of both theHVB
and AFM order parameters suggest a continuous transition.
In contrast, the “microtransitions” between different winding
numbers exhibit metastability similar to first-order transi-
tions. In the transition regions where all the displayed
m2ðwx; wyÞ values are close to zero in Fig. 5, the system
fluctuates into winding sectors with wx ≠ wy. Such winding
sectors are seen explicitly for g ∼ 0.08–0.09, where we
observe degenerate w ¼ ð0; 1Þ and (1,0) helical order adja-
cent to the conventional w ¼ ð0; 0Þ VBS phase. In the
Supplemental Material [40] we further discuss the metasta-
bility and signatures of avoided level crossings in the ground
state energy in the neighborhood of winding-number tran-
sitions. We also demonstrate that these microtransitions are
mediated by the creation of spinon pairs and their subsequent
(after winding) destruction. In the thermodynamic limit, we
expect the wx ¼ wy states to completely dominate the
HVB phase.
Phase diagram.—Figure 6 shows the phase diagram

constructed from L ¼ 96 data such as those in Fig. 5.
Results for smaller sizes indicate only minor remaining
finite-size effects (see Supplemental Material [40]). The
HVB phase narrows with decreasing h and should extend
all the way to h ¼ 0, on account of the relevance of the
infinitesimal staircase perturbation. The DQCP is then a
kind of Lifshitz point, where the modulated HVB phase
meets the VBS and AFM phases. In contrast to the classical
Lifshitz point [55], all three phases are ordered, however.
The HVB-AFM transitions replace the classical modulated-
disordered transitions and may form a line of DQCPs, as we
show in the Supplemental Material [40] by examining
critical correlation functions and signatures of emergent
U(1) symmetry in the HVB phase. In the thermodynamic

limit, the HVB phase at fixed h should contain infinitely
many winding sectors. The conventional DQCP approached
for h → 0 then has infinite winding degeneracy, as was also
argued based on studies of different winding sectors in the
standard J-Q model [56].
Discussion.—The CFT bootstrap bound ν > 0.51 [37]

for the DQCP has been regarded as conflicting with the
QMC value ν ≈ 0.45 [24,28,36] and supporting the non-
unitary CFT scenario [30–35]. However, the bootstrap
argument can also be interpreted differently [37] if the
significance of the QMC result is properly recognized: if
ν < 0.51, there must be a second relevant field. We have
here identified this field as one induced by the staggered
bond operators illustrated in Fig. 1(c) and conjecture that it
destabilizes the DQCP by topological defects. We expect
this effect also with other correlated-singlet projectors that
are incompatible with columnar or plaquette VBS states.
The values of 1=ν ¼ 3 − Δ0 and 1=ν0 ¼ 3 − Δ0

0 are con-
sistent with the CFT bootstrap [37] and it would be
interesting to derive bounds for ΔAFM and ΔVBS given
Δ0 and Δ0

0, both with and without the additional
assumption of SO(5) symmetry. If there is SO(5) symmetry,
Δ0 and Δ0

0 may correspond to crossover and SO(5)-
preserving fields, respectively.
We have further demonstrated that the staircase pertur-

bation in Fig. 1(d) is also relevant and opens up a
magnetically disordered modulated HVB phase between
the conventional VBS and AFM phases. The HVB-AFM
transition at g ¼ g2 appears to be a line of generic DQCPs.
At the VBS-HVB transition at g ¼ g1 we always observe
the smallest nonzero winding number. Thus, in the thermo-
dynamic limit k� → 0 continuously and the HVB wave-
length diverges when g↘g1. When g↗g1, the VBS
amplitude does not vanish and its correlation length
remains finite. This type of transition is similar to

FIG. 5. Helical order parameters in several ðwx; wyÞ sectors
versus g for an L ¼ 96 system at h ¼ 1. We have defined
m2ð1; 0Þ� ¼ m2ð1; 0Þ þm2ð0; 1Þ, reflecting two degenerate sec-
tors for g ∼ 0.08–0.09. The staggered AFM order parameterm2

z is
also shown.
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FIG. 6. Phase diagram of the staircase J-Q3 model. The points
with error bars are based on L ¼ 96 results (see Supplemental
Material [40]) and the lines are guides to the eye. Dotted lines
emphasize the unknown shape of the tip of the HVB phase at the
multicritical DQCP (circle) and for h > 1 (where there is a QMC
sign problem).
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predictions for certain classical helimagnets [57,58]. Our
results extend the known [1] DQCP scenario, suggesting a
multicritical point at which the relevance of topological
defects can be turned on by a second relevant symmetric
field, rendering the VBS-AFM transition first order.
Another relevant field induces winding, establishing the
conventional DQCP as a Lifshitz type end point of the
HVB phase.
The periodic boundary conditions we have used enforce

lattice commensurability, and we have not determined
whether there can be incommensurate HVB order. The
dominant winding vector k� may evolve in steps, as known
in “devil’s staircase” phase diagrams, or continuously, as in
“floating” phases [59,60]. In an incommensurate floating
HVB phase all correlations would decay as power laws and
the distribution of k would be broadened instead of a δ
function at k� (i.e., w would then not be an emergent
conserved quantum number). In the future, to settle issues
such as these, it would also be useful to study the HVB state
under different boundary conditions. We note that, even in
classical models it has been very challenging to draw
definite conclusions on the properties of modulated and
helical phases [58–63].
While transitions between different VBSs have been

studied previously [26,64,65], a HVB phase with varying
pitch was not considered. The HVB phase with Lifshitz
point resembles the tilted phase and “Cantor deconfine-
ment” in a quantum dimer model [66]. However, the spin
physics being left out in the dimer model renders two major
differences: instead of a DQCP there is Rokhsar-Kivelson
point and the critical HVB-AFM line is replaced by first-
order transitions of the modulated phase into a staggered
dimer phase.
Starting from the critical resonating valence-bond wave

function [67,68], it may be possible to construct a wave
function with winding and long-range order [69] to
describe the HVB phase. In our staircase J-Q model, the
winding is induced with a fixed direction and chirality, as
we explain further in the Supplemental Material [40].
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