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Fractionalized Fermionic Quantum Criticality in Spin-Orbital Mott Insulators
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We study transitions between topological phases featuring emergent fractionalized excitations in two-
dimensional models for Mott insulators with spin and orbital degrees of freedom. The models realize
fermionic quantum critical points in fractionalized Gross-Neveu* universality classes in (24 1)
dimensions. They are characterized by the same set of critical exponents as their ordinary Gross-Neveu
counterparts, but feature a different energy spectrum, reflecting the nontrivial topology of the adjacent
phases. We exemplify this in a square-lattice model, for which an exact mapping to a 7-V model of spinless
fermions allows us to make use of large-scale numerical results, as well as in a honeycomb-lattice model,
for which we employ e-expansion and large-N methods to estimate the critical behavior. Our results are

potentially relevant for Mott insulators with d' electronic configurations and strong spin-orbit coupling, or

for twisted bilayer structures of Kitaev materials.
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Topology has been established as an organizing principle
for states of matter beyond the Landau paradigm of
symmetry breaking. Significant progress has been made
in systematically understanding symmetry-protected topo-
logical (SPT) phases [1,2], in particular in one dimension
[3-7], the study of their phase transitions [8§—10], and the
nature of the respective critical points [11,12]. In contrast to
these short-range entangled SPT states, universal properties
of phases with intrinsic topological order are less well
understood. Their long-range entanglement structure leads
to highly unconventional features, such as emergent
deconfined gauge fields and fractionalized excitations [13].

While conventional phase transitions can be understood
by analyzing the fluctuations of a local order parameter in a
Landau-Ginzburg-Wilson framework, the absence of such
an order parameter in topological phases raises fundamen-
tal questions: What kind of (continuous) transitions involv-
ing topological phases are possible, and what are the
universal properties of these unconventional quantum
critical points [16]? Typically, systems hosting topological
order involve strong interactions, so that only few con-
trolled analytical studies and numerical results of the
corresponding transitions are available, and are mostly
limited to toy models [17]. An important example is given
by a model of hard-core bosons, which has been shown to
feature a fractionalized quantum critical point in the
(2 + 1)-dimensional XY* universality class [18]. This
unconventional universality class differs from the ordinary
XY universality as a consequence of the topological
degeneracy and the fact that only states with even numbers
of fractionalized particles are allowed in the spectrum.
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Similarly, fractionalized counterparts of the ordinary
Ising and O(N) universality classes have been discussed
[19,20]. An effective model that realizes a related
transition in the presence of gapless fermions has also
been proposed [21]. However, although a number of
topological phases are characterized by emergent fermionic
excitations [22-26], a microscopic model that exhibits a
fractionalized version of a fermionic quantum critical point
appears as yet unknown.

In this Letter, we construct two such examples.
Specifically, we show that in spin-orbital models featuring
emergent gapless Majorana excitations coupled to a Z,
gauge field, there are continuous quantum phase transitions
across which a global Z, or SO(3) spin rotation symmetry is
spontaneously broken and (a subset of) the Majorana
fermions become gapped out. These fractionalized quantum
critical points fall into fermionic Gross-Neveu* universality
classes in (2 + 1) dimensions, the nontopological counter-
parts of which have aroused significant interest lately in the
context of interacting Dirac fermion systems [27].

Model construction.—Our starting points are spin-orbital
implementations [28-32] of the bond-dependent Kitaev
exchange interaction [23], which belong to a family of
exactly soluble generalized Kitaev models recently intro-
duced [33]. These models have quantum spin-orbital-liquid
ground states with static gapped Z,-vortex excitations and
vy itinerant gapless Majorana fermions hopping on the
square (v, even) or honeycomb (v), odd) lattices. Adding
three-body interactions induces chiral next-nearest-neighbor
hopping of the Majorana fermions and opens up a topologi-
cally nontrivial band gap with Chern number C = v, giving
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rise to the sixteen anyon theories as classified in Kitaev’s
sixteenfold way [23].

We exploit the fact that these spin-orbital Kitaev models
allow for simple antiferromagnetic Heisenberg (and Ising,
respectively) spin interactions, which leave the vortex
excitations static. Considering Mott insulators with orbital
degeneracy and sizable bond-dependent exchanges, such
perturbations are expected to be present in the respective
material-specific Kugel-Khomskii [34,35] models. Adding
the perturbations spoils the exact solubility, but the Z,
fluxes carried by the vortices remain good quantum
numbers, such that resulting transitions are driven purely
by interactions among the itinerant Majorana fermions.
This allows us to find controlled theoretical descriptions
based on the fermionic parton construction of the unper-
turbed model, and to use already available high-precision
numerical results and established analytical techniques to
study the resulting problems of interacting Dirac fermions.

Gross-Neveu* transitions.—For the v,; = 2 spin-orbital
model on the square lattice with an Ising perturbation, we
find an exact mapping to an interacting fermion-hopping
problem on the z-flux lattice. This fermionic model has
been studied before using large-scale quantum Monte Carlo
simulations [36-39], allowing us to determine the phase
diagram to high accuracy. Translating these results back to
the spin-orbital model reveals the existence of a fraction-
alized fermionic quantum critical point in the Gross-Neveu-
Z,* universality class, separating a gapless Z,-symmetric
spin-orbital liquid from a partially ordered and fully gapped
phase with Ising antiferromagnetic order in the spin sector,
see Fig. 1(a). We furthermore show that the v,; = 3 spin-
orbital model on the honeycomb lattice with a Heisenberg
perturbation in the spin sector features a similar fermionic
quantum critical point between a gapless SO(3)-symmetric
spin-orbital liquid and a partially ordered and partially
gapped phase, in which the SO(3) symmetry is sponta-
neously broken, Fig. 1(b). The corresponding universality
class, dubbed Gross-Neveu-SO(3)*, is a fractionalized
version of a new member of the Gross-Neveu family,
and we determine its critical behavior below.

Similar to the fractionalized bosonic transitions [20], the
Gross-Neveu* universality classes are characterized by a
spectrum that reflects the topological degeneracy of the
adjacent phases and the additional constraints on the
physical states [40]. However, here the order parameters
are composite operators consisting of pairs of fractionalized
particles and are therefore gauge invariant, and numerically
and experimentally accessible. This means that not only the
correlation-length exponents v, but also the order-param-
eter anomalous dimensions 7, in the Gross-Neveu and
Gross-Neveu* universality classes coincide, in contrast to
the bosonic situation [18]. We emphasize that this is not the
case for the fermionic anomalous dimension 7,,, which has
a physical meaning only in the ordinary Gross-Neveu
universality classes. Further, the change of the number
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FIG. 1. (a) Adding a sufficiently strong antiferromagnetic Ising
spin interaction to the vy, = 2 Kitaev spin-orbital liquid (SOL) on
the square lattice gives rise to Ising antiferromagnetic order in the
spin sector, with the remaining degrees of freedom described in
terms of a Z, gauge theory. The continuous transition at J/K =
0.641(2) is in the Gross-Neveu-Z,* universality class. (b) The
honeycomb-lattice model features a Gross-Neveu-SO(3)* quan-
tum critical point at J./K = 0.9(2) between the v, = 3 Kitaev
SOL and a vy, = 1 Kitaev SOL with Néel order in the spin sector.

of gapless Majorana fermions at the transition can be
understood as a signature of distinct topological orders in
the two adjacent phases [51]. Lastly, at elevated temper-
atures, additional nontrivial physics can be expected as a
consequence of thermal flux excitations [52].

Ising order on the square lattice.—The vy, =2 spin-
orbital liquid is described by a Hamiltonian on the square
lattice with a two-site unit cell and a biquadratic XY-spin
and Kitaev-type-orbital interaction,

He =-KY (oo} +olo) @77,  K>0, (1)
(ij),
where the Pauli matrices (6%, 67) [(77) = (¢%, 7%, 7%, 1)] act
on spin (orbital) degrees of freedom, and (ij),,y = 1, ..., 4,
denote the four inequivalent bonds in the unit cell.
Representing the spin-orbital degrees of freedom using
Majorana fermions [40], Eq. (1) can be mapped to a
problem of two dispersing Majorana fermions ¢*, ¢’ in

the background of a Z, gauge field [23,33], Hﬁ?) —
K iugi(cicl +cicy), with i €A, j € B sublattice.
Importantly, Eq. (1) possesses an extensive number of
conserved quantities given by the two (symmetry-inequi-

valent) plaquette operators W§,2> = 0j0;, ® tiT;Tim, and
Wf,) = 6505 @ 7,7} TmTy, Which correspond to elementary
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Wilson loop operators for the gauge field u;; and thus
constrain fluxes as excitations of the gauge field to be
static. By Lieb’s theorem [53], the ground-state flux

configuration is given by WE,2> = Wf,) = —1 for all p, p'.
We now add to HE(Z) an antiferromagnetic Ising spin
interaction of the form

HY =5 6ici @ 1,1, J>0. (2)
)

Importantly, from ['H(ﬁ), W§,2)] = [H(J%), Wf,)] =0 it fol-
lows that Z, gauge fluxes remain static in the full system

H?) :Hg) +H(J%). Note that the exact solubility is
spoiled at finite J*, since upon mapping to Majorana
fermions, the Ising term introduces short-range inter-

actions, H? > —J° > cieicie;

crelcte
mions f; = (¢} + ic?)/Z, the problem maps to

ijy “ititjt e
HO [2Ku,-,-<f1f,- +fifi) 4 (ni —é) (nj —é)} :

(i)
(3)

Using complex fer-

where n; = f; fj is the fermion density operator and we
have further performed a gauge transformation f; — —if;
for j € B. Note that the SO(2) spin rotation symmetry now
corresponds to a global U(1) phase rotation symmetry.
Lieb’s theorem remains applicable for finite J* [53,54], and
thus the ground-state flux sector of H(?) describes a tight-
binding model of spinless fermions on the z-flux lattice
with hopping parameter ¢ =2K and nearest-neighbor
repulsion V =4J% at half filling. In the noninteracting
limit J* <« K, the spectrum features two Dirac nodes at the
Fermi level, describing a Dirac semimetal phase in the
fermionic model and a quantum paramagnet in the original
theory. In the strong-coupling limit J* > K, the system
favors a charge-density-wave (CDW) state, in which the Z,
order parameter p = (n;4 —n;p)/2, where n;, (n;p)
refers to the fermion density on the A (B) sublattice,
acquires a finite expectation value. In the spin-orbital basis,
the CDW state corresponds to Ising antiferromagnetic
order in the spin sector, (p) = 3 (o}, — 05 ) # 0, while
the orbital degrees of freedom feature a Z, gauge structure
[40]. Because Dirac fermions are stable against weak
perturbations, we expect the order-disorder transition to
occur at finite J°/K. In fact, the fermionic model on the 7-
flux lattice has been studied before using large-scale
quantum Monte Carlo simulations [36-38], which show
a single continuous transition at Ji = 0.641(2)K [39],
characterized by the critical exponents 7, = 0.51(3),
1/v = 1.12(1), and dynamical exponent z = 1. The quan-
tum critical point in the fermionic model falls into the
(2 + 1)-dimensional Gross-Neveu-Z, universality, which

has been excessively investigated in recent years [55-75].
Consequently, the transition in the spin-orbital model falls
into the Gross-Neveu-Z,* universality class and is char-
acterized by the same universal exponents.

Néel antiferromagnet on the honeycomb lattice.—On the
honeycomb lattice, a spin-orbital liquid can be stabilized in
a model with a biquadratic Heisenberg-spin and Kitaev-
orbital interaction [29,33],

Y LT ST
(ij),

where now (i j>7, y = 1, 2, 3, refer to the three inequivalent

bonds in the two-site unit cell and ¢ = (6%, 67,06%). As

before, the spin-orbital operators can be represented by

Majorana fermions, leading to a problem of three dispers-

ing Majorana fermions ¢; = (¢}, ¢!, ¢$)" coupled to a Z,
T

gauge field u;;, Hg) > K3 iuijc; ¢j. The gauge field

is static as a result of the conservation of the flux operators
ng) =1Q® rj‘ririr}‘r,ynrfl. The ground state of Hg) lies in

the flux-free sector WE?) = +1 for all p [53], and the three
Majorana fermions lead to a well-defined spectrum on one-

half of the lattice’s Brillouin zone, featuring one complex

Dirac node per Majorana flavor. Note that H? possesses a
global symmetry under SO(3) spin rotations, which in the
fermionic representation corresponds to a flavor rotation.
We now add an antiferromagnetic Heisenberg interaction
among only the spin degrees of freedom of the form

HY =T 5:-6,@11,  J>0. )
(ij)

Crucially, the flux operators remain static since [’H§3) W=
0. Such a spin-only Heisenberg interaction occurs
generically in spin-orbital systems due to orbital-diagonal

superexchange interactions [35,76]. Mapping Hf)
to the Majorana representation yields H<,3) >
(J/4) Z<ij>(ciTZci) . (ch[_:cj), with the SO(3) generators
L;y = —ie®” in the fundamental representation, revealing

that H<,3) again maps to short-range interactions.

For J < K, the ground state of H©) = Hg) + 7-[53) isa
semimetal with three flavors of gapless Dirac excitations,
corresponding to the v, =3 spin-orbital liquid. For

J > K, we expect the vector order parameter 7 =
(¢fuLein —chBch.B)/4 to acquire a finite expectation
value, e.g., (i) « 2 without loss of generality. This breaks
the SO(3) symmetry to a residual SO(2) x Z, symmetry
and gaps out two of the three Majoranas. However, since L?
has a zero eigenvalue, the third Majorana mode remains
gapless in the ordered phase. In the spin-orbital basis, we
have (71) = (6,4 — 0, 5)/2. The symmetry-broken phase
thus corresponds to Néel antiferromagnetic order in the
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spin sector. This phase can also be understood within a
simple mean-field decoupling &, ~ (6;) in the spin-orbital
formulation of the model, yielding

Nl |32, (6)

3 3 -
He + HY = K@) P> 7 - ;
(i)

where N, is the number of unit cells. For large J > K, the
spins order antiferromagnetically. The remaining orbital
degrees of freedom are described by the vy, = 1 Kitaev
honeycomb model with an effective antiferromagnetic
Kitaev coupling K|(7)|*.

To investigate the model at finite J/K, we employ
Majorana mean-field theory. We decouple into onsite fields
(3;) = (¢T Le;)/2, transforming as vectors under SO(3),
and singlet bond variables y;; = (ic; c;)/3. In the limiting
cases for weak and strong interactions, the ground state is
flux free [53]. Assuming that this property holds also at
intermediate values of J/K, and restricting ourselves to
isotropic and translation-invariant mean fields, we can
solve the self-consistency equations iteratively [40].
At J,. ~ 0.6K, we find a direct continuous transition from
the vy, = 3 spin-orbital liquid to the Néel-ordered phase
with a single gapless itinerant Majorana fermion, corre-
sponding to vy, = 1. We note that the true J./K should be
expected to be larger than the mean-field result, as quantum
fluctuations tend to destabilize the antiferromagnetic
order [77,78].

To validate the qualitative mean-field picture more
quantitatively, we perform infinite density renormalization
group (iDMRG) simulations [79-81] for the spin-orbital
model ). The results for the Néel spin-order parameter

and the ground-state expectation value of the plaquette
operator W5,3> are shown in Fig. 2. For the full range of

J/K, the ground state stays in the zero-flux sector with

Wf) = 1. Furthermore, the Néel spin-order parameter
shows a direct continuous transition from the paramagnetic
vy, = 3 spin-orbital liquid to the Néel spin-ordered state at
J. =~ 0.9K. The critical coupling is larger than in the mean-
field approximation, as expected.

Gross-Neveu-SO(3)*  criticality—Using a gradient
expansion of the Majorana lattice model, we derive a
continuum field theory describing the quantum critical point
in the lowest flux sector. To this end, we fix the gauge u;; =
+1 for i € A, j € B sublattice and introduce continuum
complex fermion fields w%(x) with sublattice index s = A,
B and flavor index a = x, y, z by expanding the lattice
Majorana fermions c¢%; = y%(x)e’®* 4 H.c. about the sin-
gle Dirac point K. Upon a Hubbard-Stratonovich decou-
pling of the resulting four-fermion term [1/7(1]2®E)1//]2»—>
37 =@ (1L®L)y, with y = (yi. v wi vi. wp.vi)
7 =y'(6° ® 1), and  the continuum Néel order param-
eter field, we obtain the Euclidean action

1
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FIG. 2. The Néel spin-order parameter (black dots) and the
ground-state expectation value of the plaquette operator W,
(blue triangles) as a function of J/K in the spin-orbital model
H®) from iDMRG calculations performed on an infinite cylinder
with circumference of L, = 4 unit cells. The iDMRG uses two
unit cells along the x direction as its translationally invariant
building block and the bond dimension is y = 1000.

-

S= /dzxdr {W‘@”w +9¢ ¥ (1, ® L)y

+o@(=0; +m)p+ A5 §)*| (7)

N =

Here, (y*) = (6%, 06%,0”) ® 15,4 = 0, 1, 2, corresponds to a
six-dimensional representation of the Clifford algebra, the
Pauli matrices ¢ [SO(3) generators Z] act on the sublattice
(flavor) indices, and we have allowed for dynamics and the
symmetry-allowed quartic self-interaction of the order
parameter. The theory describes three flavors of two-
component Dirac fermions coupled to a vector order
parameter that transforms in the fundamental representation
of SO(3), corresponding to spin 1. The boson mass m?> can
be used to tune through the SO(3)-symmetry-breaking
transition. For m? > 0, the order parameter ¢ is gapped
and can be integrated out, corresponding to the paramag-
netic spin-orbital-liquid phase characterized by three gap-
less Dirac fermions. For m? < 0, the minimum of the
potential occurs at finite ¢, indicating spontaneous SO(3)
symmetry breaking and an interaction-induced band gap for
two out of the three fermions, with the third one remaining
gapless, corresponding to the Néel-spin-ordered phase.
The existence of a quantum critical point at vanishing
renormalized mass m?> = 0 can be shown using a standard e
expansion about the upper critical space-time dimension of
four. The flow equations admit an infrared stable fixed
point at g2 > 0 and 1, > O that is characterized by a set of
universal exponents [40]. Extrapolating the one-loop
results to € = 1, we obtain the estimates Mg ~ (.33 and
1/v = 1.1. The remaining exponents a, /3, 7, and § can then
be obtained by means of the usual hyperscaling relations
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[82], and the dynamical critical exponent is z = 1. For
completeness, we also quote the fermion anomalous
dimension, which is accessible in the ordinary Gross-
Neveu-SO(3) universality class only, reading 7, ~ 0.17.
Note that this Gross-Neveu-SO(3) critical point defines a
new universality class different from those of the Gross-
Neveu-SU(2) (= chiral Heisenberg) model [56,63,83-91],
in which case the fermion mass term transforms in the
fundamental representation of SU(2), corresponding to spin
1/2, and the spectrum in the ordered phase is fully gapped.

Upon generalizing the theory to N flavors of Dirac
fermions coupled to an SO(3) vector order parameter, the
critical properties can alternatively be computed within a
1/N expansion in fixed dimension. Extrapolating the
leading-order results [40] to the physical N = 3, we obtain
the estimates 74 ~ 0.32, n,, ~# 0.14, and 1/v=0.5. While
the anomalous dimensions agree with the e-expansion
results within ~5% accuracy, the agreement in the case
of 1/v is significantly less favorable. This may be due to a
sizable 1/N? correction to this observable, similar to the
situation in the Gross-Neveu-SU(2) model [85].

Discussion.—We have studied novel transitions between
topological phases with concomitant symmetry breaking
by making use of unbiased numerical results and controlled
analytical approaches. The quantum critical points that
we have discovered feature gapless Majorana fermions
coupled to gapped Z, gauge fields as well as gauge-
invariant order-parameter bosons, and fall into a previously
unknown family of fractionalized fermionic universality
classes. They represent controlled instances of the larger
class of unconventional quantum phase transitions that are
characterized by fractionalized excitations, which includes
deconfined quantum critical points between different con-
ventionally ordered phases [92-96], between conventional
and deconfined phases [21,97-100], as well as between
different deconfined phases [101-103]. The models studied
in this work belong to the latter class, with the deconfined
modes at the critical point being in a one-to-one corre-
spondence with the deconfined elementary excitations of
the adjacent phases.

Our findings call for more detailed theoretical inves-
tigations of the Gross-Neveu* criticalities, in particular in
the SO(3) case, for which currently only leading-order
estimates are available. It would also be interesting to study
the wuniversal finite-size spectra, e.g., on the torus
[19,20,74,104].

Our results may be relevant for 4d' or 5d' Mott
insulators [76,105,106]. For instance, a-ZrCl; realizes
strongly bond-dependent interactions in analogy to the
& Kitaev materials [107], and has been proposed as a
candidate for an SU(4)-symmetric spin-orbital liquid on the
honeycomb lattice [108]. Similarly, in double perovskite
systems, strong spin-orbit coupling can lead to j.; = 3/2
multiplets subject to bond-dependent exchange interactions
[109]. In particular, absence of ordering down to low

temperatures has been observed in Ba,YMoOg, and
Kitaev-type spin-orbital liquids have been proposed as
candidate ground states [110]. In the above materials,
resonant inelastic x-ray scattering and neutron scattering
can separately probe spin and spin-orbital excitations,
allowing to resolve potential partial order that we find
in our models. Kugel-Khomskii-type models with aniso-
tropic exchange interactions have also been proposed to
describe correlated insulating phases in twisted bilayers
[76,111-113]. In this regard, it may be of interest to
consider twisted bilayer configurations of Kitaev materials,
such as a-RuCl; [114,115].

In real materials, additional perturbations that generate
fluctuations of the gauge field are present. When their
magnitudes become of the order of the (unperturbed) flux
gap, further transitions that might lead to confinement of
the fractionalized particles can occur. The study of such
transitions represents another interesting direction for
future research.
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