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We study gauge fields produced by gradients of the Dzyaloshinskii-Moriya interaction and propose a
model of an AFM topological insulator of magnons. In the long wavelength limit, the Landau levels
induced by the inhomogeneous Dzyaloshinskii-Moriya interaction exhibit relativistic physics described by
the Klein-Gordon equation. The spin Nernst response due to the formation of magnonic Landau levels is
compared to similar topological responses in skyrmion and vortex-antivortex crystal phases of AFM
insulators. Our studies show that AFM insulators exhibit rich physics associated with topological magnon

excitations.
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Emergent electromagnetism [1,2] is at the core of a
multitude of fascinating physical phenomena ranging
from the topological Hall effect [3-9] in skyrmion crystals
[10-13] to formation of topological magnons [14-22].
Many applications related to information storage and
processing can emerge from such useful features of
magnetic systems as topological protection and low-
dissipation spin transport [23—-26]. The need for minimizing
losses due to Joule heating has shifted the focus of recent
research to insulating materials lacking itinerant electrons
but still capable of carrying spin currents [27].

Recently, antiferromagnets (AFMs) became the focus of
active research as they possess unique features associated
with the lack of stray fields and ultrafast dynamics in
the THz range [28]. Many spintronics concepts readily
extend to AFM materials as is the case with spin-orbit
torques [29] demonstrated experimentally in CuMnAs
[30,31]. Skyrmions in AFMs can be potentially stabilized
by staggered fields [32,33] induced by fieldlike spin-orbit
torques in CuMnAs and Mn,Au or by coupling to
boundary magnetization in Cr,O;. AFMs are expected
to exhibit interesting physics associated with vanishing
topological and skyrmion Hall effects [34-38]. The topo-
logical spin Hall effect in AFMs has been predicted for
conducting systems [32,39,40]. In insulating materials, the
topological spin Hall effect mediated by magnons has been
studied for isolated skyrmions [41]. The topological spin
Nernst effect in skyrmion crystals has not been studied in
insulators where the response can be associated with
appearance of Landau levels of magnons [42,43].

In this Letter, we study gauge fields produced by
gradients of the Dzyaloshinskii-Moriya interaction
(DMI) and show that such fields can lead to realizations
of magnon Landau levels and an AFM magnonic topo-
logical insulator. In contrast to previous proposals [19,44],
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in the long wavelength limit the proposed AFM magnonic
topological insulator maps to the Klein-Gordon equation in
the presence of a uniform magnetic field and does not rely on
the Aharonov-Casher effect with prefactor 1/c?, as gauge
fields originate in DMI gradients. The resulting Landau
levels lead to unconventional steps in the accumulation of
the spin Chern number and can be probed by measuring the
spin Nernst response. We further compare such a response to
the magnonic topological spin Nernst effect in AFM sky-
rmion crystals and square crystals of vortices and antivor-
tices. We confirm that the topological spin responses of
AFM skyrmions can be qualitatively understood by con-
sidering Landau levels induced by a uniform magnetic flux;
however, we also identify differences.

AFM magnons and fictitious gauge fields.—We begin by
implementing various gauge fields into the description of
AFM magnons. We consider magnonic excitations on top
of a smooth Néel texture and in the presence of a slowly
varying DMI. We consider the free energy density,
Flm,n] = Fln] + A/2m*> with A being the inverse
of the transverse spin susceptibility, and replace m, n by
m = (my +mg)/2 and n = (my —mpg)/2 where the sub-
lattice spin fields are m, and mg. We also define

_J
2

where we sum over repeated index i = x, y, n is a unit
vector along the Néel order, 7 is the exchange constant, /C
is the effective uniaxial anisotropy, H, is the staggered
magnetic field arising due to the spin-orbit torque or the
effect of boundary magnetization [32,33], and D;; = (D;),
is the DMI described by a general tensor. We concentrate
on the axially symmetric interface with a heavy metal
for which there are only two nonzero tensor coefficients
Dy, = =D, =D [45].

Fln] (Om)*+K(n-2)>—H,(n-2)+D;(0nxn), (1)
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We assume that in the ground state my = 0 and n, =
(sin@cos ¢, sinOsin ¢, cos @) where 6,¢ are spherical
angles. This assumption ensures decoupling of the two
chirality subspaces. Numerically, we see that lifting this
assumption does not substantially modify our conclusions.
The local spin field can be conveniently parametrized
by a rotational matrix R = exp(L.¢)exp(L,0) with
(L,»)jk = —¢€;x (i=x,y, z or 1,2,3) being the generators
of rotational matrices. Specifically, m,z) = ng( B) with
mly =2\/1=|yal>+37} +3ry and mp = =2 /1 = |y|* +
xyy — 9y, where yj’(’é) stands for the spin wave, and
|7’A(B)|2 = (7’2(3))2 + (72(3))2- We
varying spin textures and the DMI and limit the discussion
to the leading order of its spatial derivative. As the size
of the DMI induced textures scales as J/D, we system-
atically perform an analysis up to the first order in D/ J
and discard anisotropy and staggered magnetic field terms,
assumed to be small when texture is present [33,42].
Plugging the rotational-matrix-parametrized spin field
into the free energy F[m,n] generates a Hamiltonian,
in which magnons couple to a spin texture induced

consider  slowly

emergent gauge field “a” [43,46,47], Hyn,e = 2 wiHy with
H=H, ®H.,

A A T . A T s .

H, = [§_§( z;m)z} + [§+§(V—Z)(a)2} 7. (2)
Here, y = (wa.yg wi. wa)" With wam) =1}z + vy )

7, is the Pauli matrix, y = 41 labels the chirality
of magnons. The emergent gauge field has two
contributions, a = a' +a¢, where ai = cos00;¢ and

=—(D/J)exp (ﬂLZ/2)n0. These two parts result in
emergent magnetic fields, (ﬁxa) 1 €;jkMo°

(0jng x Oyng), and b = and (see details in the
Supplemental Material (SM) [48]). The latter can generate
an emergent magnetic field through an inhomogeneous
DMI in the absence of spin textures. The in-plane
component, aﬁ = (D/J)ny x 2, induces a fictitious

magnetic field b = —%(VD -ny)/J (e.g., for D/J = By
and ny, = y we get b? = —B?).

The kinetic term of magnons can be extracted from the
Berry phase Lagrangian of spins [52], we obtain Ly, =
iSy'o; ® t4y7/4 with S being the spin density. The total
Lagrangian density of the magnon field is block diagonal

with respect to subspace n, = (wa,wj) . n- = (Wi, wp)".
The decoupled matrix Schrodinger equations are

s A
l)(573at77;( = H;ﬂ//;(- (3)

We first consider the uniform emergent magnetic field
which can be justified for the uniform DMI gradient or

smooth enough textures. In the Landau gauge,
ay = (yB,0,0), the eigenenergies are chirality degenerate,
ef = +/JAB(2n + 1)/(2S), which agrees with Landau
levels of the Klein-Gordon equation [53]. The wave
function can be found by substituting ¢ k(r) =
(a1, a,)"&y (r) into Hamiltonian Eq. (2) where folk (r)
is the known eigenfunction of the nth nonrelativistic
Landau level [54]. The number of degenerate states is
determined by the total number of the magnetic flux
quanta. The two species of magnons with opposite chirality
feel opposite magnetic flux in Eq. (2) as they are time-
reversal partners of each other, which results in vanishing
thermal Hall response [48]. On the other hand, spin and
chirality current responses are nonzero.

Spin Nernst effect in an AFM topological insulator.—In
the absence of spin textures, Eq. (2) can describe an AFM
topological insulator. The gauge field is induced by a
gradient of the DMI and index y also corresponds to the
conserved spin s,. To describe the magnonic topological
insulators numerically, we construct and analyze lattice
models of both the FM and the AFM with the gradient of
the DMI (see SM [48]). A square lattice Hamiltonian of the
collinear FM (AFM) reads

H=Y"JS;-S;+D;;(S;xS,)
(i)

ZH 57— (4)

The order parameter is oriented along the y axis to realize
the Landau gauge. Above, the exchange parameteris J < 0
(J > 0) for the FM (AFM), H; is (staggered) magnetic
field, K is the magnetic anisotropy, and D;; = D(r)Z x §;;
describes the DMI with Rashba symmetry for a bond §;;. In
the FM case, we write the exchange and DMI terms in a
rotated frame with the quantization axis along the y axis as
Jij(e Sy ST + euStST) /24 JSiS; where Jjeits =
J + iD;; - ng wrth n bemg the drrectron of the order
parameter [55]. In the AFM case, we need to replace
Sj-t - S;F, and Sj - —S; for one of sublattices.

To replicate the Landau gauge, we assume that bonds are
along the Cartesian coordinates and the strength of the DMI
is nonuniform, i.e., D(r)§/J = tan[6By] where & is the
bond length (when the DMI is small D(r)/J ~ By, see
details in the SM [48]). Using the Holstein-Primakoff
transformatlon in the 11m1t of large S, i.e., S+ ~/2Sa;,

\/_ Sa;, S~ S — al ; d;, We recover drscreet realization
of noninteracting magnons subjected to the uniform mag-
netic field with a vector potential @y = (yB,0,0). In the
long wavelength limit, FM magnons are described by the
Schrodinger equation while AFM magnons by the Klein-
Gordon equation. We concentrate on the AFM using
the FM system only for comparison, where in both cases
the spin along the quantization axis is conserved. After the
Fourier transform, the Hamiltonian for s, = 1 becomes
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FIG. 1. Left: Lowest magnon bands of a skyrmion crystal in a

square lattice AFM along the Brillouin zone loop I'-X-M-T". A
splitting of chiral modes can be clearly identified. Right:
Hofstadter’s butterfly of the AFM with uniform magnetic flux
O = p/q®d, per unit cell for ¢ = 1000, @ is the flux quantum.

L= %Js;wi (k)AL (k). (). (5)

where W, = [a,(k), b} (=k), ..., bly(=k), ary (k)] is the
bosonic field, and the unit cell contains an N by 2 array of
atoms from each sublattice of the square-lattice AFM. The
Hamiltonian has a block structure

()

where for 2N x 2N matrices a and b the nonzero elements
are glven by a;; =4, b; ; = cos(k, + j¢p,) for i = j, and
a;=a;;=e =ik v forz —] = 1 modulo 2N. Here the phase
factor ¢0 = 2z p/q describes the strength of magnetic field,
ie., 2p is the number of flux quanta for the enlarged unit
cell and g =2N. For 5. =—1, H_ (k) HT(—k) and
W_(k) = [a](~k). by (k). .... b (k), @y (~K)]T. The total
Hamiltonian matrix can be diagonalized by a paraunitary
matrix Ty, i.e., T HT, = &, where & is a diagonal matrix
describing elgenvalues [56]. By varying the strength of the
DMI, we can control the magnetic flux per unit cell which
allows us to observe Hofstadter’s butterfly in full analogy
with electronic systems (see Fig. 1). Similarly to electronic
systems, the exact energy bands can be found from
expansion of p/g into continuous fractions or from the
Diophantine equation [57,58]. As can be seen from Fig. 1,
the form of Hofstadter’s butterfly differs from the case of
nonrelativistic electrons.

In (non)collinear systems, the spin responses can be
described by the spin Berry curvature [17,59],

9,293, x P
Qf = i) (83),0(83)
! mzﬁz " " (gnﬁk - gm,k)z

NG

{92} =
and the Pauli matrix in

where we define the anticommutator
9532(1 + 2{1639, ém,k = (538k)

mm?

the particle-hole space, i.e., (63),,, = | for particlelike
states and (63),,, = —1 for holelike states. The magnon
spin density operator along the a axis is given by X*(r) =
Wi (r)Z*®(r) where %= -0, ® Diag(m, ..., m$)
with the Pauli matrix ¢, describing the particle-hole space
and m; being the direction of magnetic moment at position
i in a unit cell of M atoms [59]. We consider the spin
Nernst response [60], a3, =kp/VY ¥ .1 €1 (g(en,k))Q,(f) (k)
where g(g) = [e®/ksT) — 1]~ is the Bose-Einstein distribu-
tion and ¢ (x) = (1 + x)In(1 4+ x) — xIn(x). Because of
degeneracy, we apply Eq. (7) to each subspace s, = £1
separately. The total spin Chern number is a sum of
spin Chern numbers for each subspace, ie., Cj =
(1/27) [, O d?k where QF = QP + Qi)™

To establish a connection to the quantum Hall effect, we
study the total Berry curvature of states below a certain

energy, C*(e) = (1/27) [3, ankaQﬁf)dzk. For FM
magnons, the results for the total Berry curvature and

the magnon density of states (DOS) are shown in Figs. 2(a)
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FIG. 2. (a) and (c) The density of states (DOS) of magnons in a
square lattice FM or AFM in the absence of gauge fields. (b) The
total (integrated) Berry curvature due to flux induced by the DMI
(blue curve) for p =1 and ¢ = 77. The same but nonuniform
flux is produced by two skyrmions in a SkX unit cell of 14 x 22
atoms for which the total Berry curvature is shown by the red
curve. (d) The total (integrated) spin Berry curvature due to flux
induced by the DMI (blue curve) for p =2 and ¢ = 270. The
same but nonuniform flux is produced by two skyrmions in the
AFM SkX unit cell of 18 x 30 atoms for which the total sublattice
Berry curvature is shown by red curve. In both plots the
semiclassical approximation is shown by a green curve.

257201-3



PHYSICAL REVIEW LETTERS 125, 257201 (2020)

25
2.0
815
10
05

0.0},
00 02 04 06 08 1.0

kgTIJS

FIG. 3. Spin Nernst conductivity as a function of temperature.
Red curve describes the topological spin Nernst response for a
square lattice AFM with a unit cell of 18 x 30 atoms containing
two skyrmions. Blue curve describes the spin Nernst response in
the AFM magnonic topological insulator with the DMI induced
fictitious flux ® = p/q®, for p =2 and g = 270.

and 2(b). We observe a behavior associated with the van
Hove singularity [61] of the magnon band structure. This
causes a sign change in the total Berry curvature at the
transition between particle and holelike states [62,63]. For
AFM magnons, the total spin Berry curvature shown in
Fig. 2(d) exhibits steps of 2 and uneven energy height even
in the long wavelength limit. We observe a sharp change in
the spin Berry curvature at the DOS singularity in Fig. 2(c).
For both FM and AFM magnons, away from DOS
singularity the formation of magnon Landau levels can
be described by Onsager’s quantization scheme [64,65].
We confirm this by comparing the semiclassical curve
corresponding to the area enclosed by the DOS with the
Berry curvature curves in Fig. 2. Finally, the spin Nernst
response is shown in Fig. 3.

AFM skyrmions and the topological spin Nernst effect.—
The zero temperature phase diagram in Fig. 4 has been
calculated by energy minimization [66] from Eq. (1)
combined with rescaling of unit cell [67]. The free energy
density in Eq. (1) and the resulting phase diagram can also
describe other spin textures obtained from Néel skyrmions
by a global transformation in spin space (e.g., antiskyr-
mions or Bloch skyrmions) [67]. In addition to the
AFM-hexagonal skyrmion lattice (SkX) phase identified
in Ref. [33], we also identify the AFM-square crystal (SC)
vortex-antivortex lattice [67—72] stabilized by the easy-
plane anisotropy. Such textures can also contain antiferro-
magnetic antimerons with fractional topological charge as
shown in Fig. 4. In the absence of DMI gradients, we study
the effect of fictitious magnetic fields where each SkX or
SC unit cell with topological charge one contributes two
flux quanta.

For a uniform fictitious field approximation,
b=-Bz, with B=|(Vxa)|=4x(p,,) >0, where
Pop = Mg - (Oxig X Oyng). This reproduces results from
the previous section. For a nonuniform fictitious field of
skyrmion lattice with basis vectors d; and a,, the Landau-
level wave functions can be linearly combined to a new
periodic basis for each energy level, ¢ ., which satisfies

30—
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FIG. 4. Zero temperature phase diagram of AFM with DMI.
The axes correspond to the dimensionless staggered magnetic
field and dimensionless effective anisotropy. The gray line
separates the aligned and the tilted regions of the FM phase.
This phase is taken over by the hexagonal skyrmion lattice (SkX),
spiral (SP), cone phase, and the square crystal of vortices and
antivortices (SC). The upper inset shows a hexagonal lattice unit
cell with a skyrmion in the center. The lower inset shows a square
crystal unit cell with an AFM antimeron in the center. Red and
yellow correspond to the positive topological charge density and
blue corresponds to the negative topological charge density.

Tay o Vi = e®@e gt with magnetic translational oper-
ator Tj , satisfying T; T; = e%2*"T; T; . The phase
factor indicates that each skyrmion unit cell contains
topological charge Q which leads to splitting into 2|Q|
subbands described by quantum number m. In this new
basis, one can include perturbations to the Hamiltonian due
to nonuniform fictitious flux and the higher order terms
disregarded earlier [42] (see SM [48]). This treatment leads
to the splitting of Landau levels and to the coupling of
magnons with opposite chiralities, as confirmed by calcu-
lating the magnon spectrum of skyrmion crystal in a square
lattice AFM in Fig. 1.

To understand the effect of the splitting of Landau levels,
we study a square lattice AFM SkX and magnon excitations
numerically. Magnon excitations on top of textures in Fig. 4
can be described by the Holstein-Primakoff transformation
in a local frame [73]. The resulting Hamiltonian describes
noninteracting magnons and can be diagonalized using the
paraunitary matrices. The spectrum for the lowest bands of
a lattice containing 18 x 30 atoms is shown in Fig. 1. We
observe that the Landau levels become dispersive and that
AFM chiral modes split. The total sublattice Berry curva-
ture is shown in Fig. 2(d) where we use sublattice instead of
spin in Eq. (7). The sublattice in Eq. (2) and spin in Eq. (5)
can be mapped onto each other in the absence of coupling
between chiral modes. We observe only qualitative agree-
ment with Landau levels in the AFM calculated earlier for
uniform flux due to coupling of chiral modes in AFM SkX
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and nonuniformity of flux. In Fig. 2(b), we observe better
agreement between Berry curvatures calculated for FM
SkX in the lattice of 14 x 22 atoms and for Landau levels in
the FM with uniform flux. The sign change of the Berry
curvatures in Figs. 2(b) and 2(d) can lead to the sign change
of the topological thermal Hall and spin Nernst responses
as a function of temperature. Using the spin Berry curvature
for the z component of spin [32] (see SM [48]), we
calculate the topological spin Nernst response in Fig. 3
and confirm the sign change. As expected, the spin Nernst
response in AFM SkX is suppressed compared to a similar
response in the AFM topological insulator (see Fig. 3).
Note that at higher temperatures, a description relying on
noninteracting magnons can become unreliable.

Conclusions.—We have constructed a model of an AFM
topological insulator of magnons. The fictitious flux is
induced by inhomogeneous DMI and leads to the formation
of an unconventional Hofstadter’s butterfly. AFM magnon
Landau levels exhibit a large spin Nernst response and in
the long wavelength limit are described by the Klein-
Gordon equation. Landau levels characterized by the
energy scale v AJB/S ~ 0.4 meV can be achieved by a
DMI change of 0.5 mJ/m?, e.g., in NiO/Au, over the length
of 500 nm [74-78]. Similar physics also arises in the AFM-
SkX and AFM square vortex-antivortex phase leading to a
topological spin Nernst response. This response is
associated with the formation of dispersive Landau levels.
Our predictions can be tested in magnetoelectrics
with boundary magnetization [79], rare earth garnet ferri-
magnets, and AFMs with DMI due to structural asymmetry
induced by neighbouring layer [78,80].

This work was supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under
Award No. DE-SC0021019.
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