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We introduce a method to design topological mechanical metamaterials that are not constrained by
Newtonian dynamics. The unit cells in a mechanical lattice are subjected to active feedback forces that are
processed through autonomous controllers preprogrammed to generate the desired local response in real
time. As an example, we focus on the quantum Haldane model, which is a two-band system with
nonreciprocal coupling terms, the implementation of which in mechanical systems requires violating
Newton’s third law. We demonstrate that the required topological phase characterized by chiral edge modes
can be achieved in an analogous mechanical system only with closed-loop control. We then show that our
approach enables us to realize, a modified version of the Haldane model in a mechanical metamaterial.
Here, the complex-valued couplings are polarized in a way that modes on opposite edges of a lattice
propagate in the same direction, and are balanced by counterpropagating bulk modes. The proposed
method is general and flexible, and could be used to realize arbitrary lattice parameters, such as nonlocal or
nonlinear couplings, time-dependent potentials, non-Hermitian dynamics, and more, on a single platform.
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The discovery of topologically protected wave pheno-
mena in quantum physics [1–4] with their exceptional
immunity to backscattering has recently inspired the search
for realizations in classical systems, substituting the
electronic band structure with acoustic [5–8] or photonic
[9–13] dispersion relations. These classical analogs are not
merely a way to mimic well-known effects, but also a way
to push the study of topological physics to new regimes
[14–22]. However, systems governed by Newtonian
dynamics, such as mechanical structures supporting acous-
tic or elastic waves, usually do not naturally exhibit
topological properties [23]. This insight is driving the
current surge of activity aimed at designing topological
mechanical metamaterials [24–32].
The particular quantum effect considered for the classical

realization dictates the metamaterial design. As classical-
mechanical systems are constrained by Newtonian laws of
motion, the range of known topological phenomena that can
be observed is limited. The quantum spin Hall effect [3,4] or
the quantum valley Hall effect [33], for which the spin-orbit
coupling is obtained through breaking spatial symmetry in a
lattice, comply with Newtonian dynamics, and can be
implemented with purely passive components. Indeed, the
vast majority of reports on mechanical topological
metamaterials implement these effects, e.g., by designing
the spacing of steel bars [7] or bottlelike Helmholtz
resonators [8] in an acoustic waveguide, the spacing
of resonators on a plate [29], the spring constants in a

mass-spring lattice [30], or a pendula array with intricate
couplings [24], to name a few.
Some quantum phases, however, defy such a straight-

forward classical analog. For example, creating an acoustic
analog of the quantum Hall effect, which requires breaking
time reversal symmetry (TRS) (i.e., a Chern insulator), is
considerably more involved, as passive design becomes
insufficient. Consequently, there have only been a few
reports of TRS breaking in mechanical or acoustic systems;
for fixed parameters and excitation frequency, a Chern
insulator was emulated in a lattice of gyroscopes [25,26]
and in a system of circulating fluids [5,34]. These realiza-
tions require auxiliary in-plane degrees of freedom (d.o.f.),
i.e., actual physical in-plane rotation of masses or fluids.
Another method based on Floquet acoustic crystals
employed temporal modulation of the acoustic parameters
or the frequency [15–17]. These methods increase the
complexity of the physical realization compared to the
desired model—for example they necessarily result in
additional dispersion bands.
It would be advantageous to break TRS with time-

invariant parameters in a two-band metamaterial with out-
of-plane d.o.f. alone, i.e., 1 d.o.f. per mass. This is because
it will enable reproduction of quantum effects that are
associated with two-band systems [2,35–39]. In addition, it
appears more feasible to realize such systems experimen-
tally, as out-of-plane d.o.f. imply a scalar field, such as
acoustic pressure or flexural waves. However, when
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only out-of-plane d.o.f. (and time invariant parameters) are
allowed, breaking TRS in acoustic or mechanical meta-
materials requires lattice couplings that are inconsistent
with the governing physical laws, including complex-
valued directional, or nonreciprocal couplings, as discussed
below.
In this Letter, we present a general method of realizing

mechanical metamaterials that are not constrained by
Newtonian laws of motion. At the heart of our method
is the application of active forces to the masses in the
out-of-plane direction, in real time and autonomously,
according to a predefined, programmable feedback control
scheme. To be concrete, we focus on a particular example
and show how it is possible to break TRS using only out-of-
plane d.o.f., with a single d.o.f. per site in a discrete
mechanical lattice.
Employing active control in the design of metamaterials

has recently attracted considerable interest [18–22,40–46].
In our system, an autonomous preprogrammed controller in
each unit cell receives measurements of displacements and
velocities of masses in neighboring lattice sites, processes
them, and feeds back to the control forces. The control
operation therefore determines, in real time, the dynamic
response of the masses. Since the particular couplings are
solely defined by the algorithm that we program into the
controller, the feedback-based metamaterial is able to
sustain any couplings (within hardware limitations), includ-
ing those that are otherwise physically not achievable, such
as directional or nonreciprocal couplings. Furthermore, a
single system is not limited to emulate a particular quantum
effect, but can be programmed to any other functionality.
We demonstrate our feedback-based design method by

implementing, analytically and numerically, a classical-
mechanical analog of the quantum Haldane model [2],
and the modified quantum Haldane model [35–39]. Both
systems require non-Newtonian physics, which can be
achieved only by the embedded feedback control mecha-
nism. Below we present a detailed derivation of the con-
troller that implements the Haldane model. For the modified
Haldane model, we show only the resulting dynamical
simulations, with the details given in the Supplemental
Material [47]. To further demonstrate the versatility of our
method, in the Supplemental Material [47] we also
reprogram the embedded controller to realize a multipole
pseudospin topological insulator on the same platform.
The Haldane model showed that the quantum Hall effect

can be obtained without an external magnetic field, but
rather by breaking TRS. It is defined on a honeycomb
lattice spanned by fa1; a2g, which consists of two inter-
lacing triangular sublattices exhibiting two sites per unit
cell A and B, as illustrated in Fig. 1(a). We denote the lattice
constant by a. In our classical-mechanical analog, the
circles are identical dimensionless masses m0 ¼ 1 that
can vibrate only along the vertical axis a3. The gray bars
indicate nearest-neighbor couplings, which are equivalent

to Hookean springs of stiffness t1 > 0 connecting the
masses. When only the t1 springs exist, the lattice is
analogous to graphene.
The quantum Haldane model assumes additional next-

nearest-neighbor bonds of a complex strength t2e�iϕ in the
directions v1, v2, v3 indicated by the dashed black lines in
Fig. 1(a). In a mechanical context, such a bond represents a

FIG. 1. Feedback control scheme for generating the Haldane
model in a mechanical metamaterial. (a) A honeycomb lattice in
the fa1; a2g space comprising identical masses (black and white
circles) connected to nearest neighbors by Hookean springs (gray
bars). The masses can move in the a3 (out-of-plane) direction
only, implying a single d.o.f. per site. The red and blue arrows
indicate out-of-plane displacement and velocity measurements of
the next-nearest neighbors (in fv1; v2; v3g directions). Dashed
lines indicate the Haldane model bonds that are created in real
time when control is turned on. (b) The measurement scheme
detailed for the A site in the fi; jg unit cell. The black arrow
indicates the total control force fA ¼ fþ þ f− þ f0. Red and
blue arrows distinguish between measurements that are fed to
controller gains t2eþiϕ and t2e−iϕ (red and blue cubes), applied
through the fþ and f− components, respectively. (c) Feedback
control scheme of the entire fi; jg unit cell, including all the
measured signals.
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nonreciprocal coupling t2eþiϕ (red arrow) toward one mass
and t2e−iϕ (blue arrow) toward the other connected mass,
which violates Newton’s third law and is therefore non-
physical. These couplings cannot be implemented with
passive devices such as springs, lever arms, etc., or with
auxiliary active devices like gyroscopes that rely on
in-plane d.o.f. We realize these couplings using active
closed-loop control. Contrary to usual expectations, the
complex values of the forces are physical in the time-
harmonic regime because they are related to velocities
rather than to displacements. The full form of the
Haldane model is captured by the Bloch Hamiltonian
HðkÞ ¼ P

3
l¼0HlðkÞσl, where k is the wave vector, σl

are the Pauli matrices, and

H0 ¼ β þ 2t2 cosϕ
X3

m¼1

cosðk · vmÞ;

H1 ¼ −t1(1þ cosðk · a1Þ þ cosðk · a2Þ);
H2 ¼ t1( sinðk · a1Þ þ sinðk · a2Þ);

H3 ¼ M − 2t2 sinϕ
X3

m¼1

sinðk · vmÞ: ð1Þ

In a quantum system, β ¼ 0. In the classical-mechanical
analog of graphene β ¼ 3t1, indicating the restoring t1
force from the three nearest-neighbor springs and it is not
related to Haldane’s next-nearest-neighbor bonds. The
constant M accounts for a possible spatial inversion
symmetry breaking, in addition to the TRS breaking
provided by the t2 bonds.
The goal of our embedded control system is to create a

classical-mechanical metamaterial, whose dynamics in
lattice momentum space k is given by

ω2pðkÞ ¼ HðkÞpðkÞ: ð2Þ

Here, HðkÞ is the Bloch Hamiltonian of the Haldane
model, and pðkÞ is the complex amplitude vector of the
A and B sites in momentum space. Our starting point is the
graphenelike lattice (t1 springs only), in which we
denote the d.o.f. of each fi; jg unit cell by
ui;jðtÞ ¼ ½ uAi;jðtÞ; uBi;jðtÞ �T . The time domain unit cell
dynamics, including external mechanical control forces
fAi;j; f

B
i;j that are applied to the masses in the a3 direction,

reads

üAi;j ¼ −3t1uAi;j þ t1ðuBi;j þ uBiþ1;j þ uBi;jþ1Þ þ fAi;j;

üBi;j ¼ −3t1uBi;j þ t1ðuAi;j þ uAi−1;j þ uAi;j−1Þ þ fBi;j: ð3Þ

The control forces are decomposed into fAi;j ¼
fAþi;j þ fA−i;j þ fA0i;j and fBi;j ¼ fBþi;j þ fB−i;j þ fB0i;j . The fþ
and f− components are responsible for generating the
t2eþiϕ and the t2e−iϕ couplings, respectively, and f0 is

responsible for generatingM. As depicted in Fig. 1(b), e.g.,
for the A site, the fAþ and fA− components receive
measured signals of displacements and velocities of the
uAiþ1;j; u

A
i−1;jþ1; u

A
i;j−1 and uAi−1;j; u

A
iþ1;j−1; u

A
i;jþ1 d.o.f., as

indicated by the red and blue arrows, respectively. These
arrows are also shown on the multicell lattice segment in
Fig. 1(a). The fA0 component is not depicted. The measure-
ments are processed in real time by corresponding con-
trollers indicated by red and blue cubes. The control action
is illustrated in Fig. 1(c) for the fi; jg unit cell. For each site
A and B (the superscripts are omitted in the following), the
control forces are related to the measured signals as

ðfþi;j f−i;j f0i;j ÞT ¼ Cðyþi;j vþi;j y−i;j v−i;j ui;j ÞT; ð4Þ

where, for the A site,

y�i;j ¼ ui�1;j þ ui∓1;j�1 þ ui;j∓1;

v�i;j ¼ _ui�1;j þ _ui∓1;j�1 þ _ui;j∓1: ð5Þ

For the B site, the definitions of yþðvþÞ and y−ðv−Þ in
Eq. (5) are swapped. The control matrix C at each fi; jg
unit cell, for both A and B sites, is given by

C¼

0

B@

t2 cosϕ
t2
ω sinϕ 0 0 0

0 0 t2 cosϕ − t2
ω sinϕ 0

0 0 0 0 �M

1

CA: ð6Þ

The sign ofM in Eq. (6) is positive (negative) for the A (B)
sites. Since in the frequency domain, the velocity v is
related to the displacement u as v ¼ iωu, the controller
gains that generate the velocity couplings are normalized
by the frequency of the source signal, which is a fixed
scalar in a given working regime. This normalization
guarantees the frequency independence of the complex-
valued nonreciprocal next-nearest-neighbor couplings
required by the Haldane model Hamiltonian (1), which
are created by the control forces in real time. The resulting
closed-loop system is dynamically stable, and the control
forces do not exceed the source force amplitude.
A two-band system implies a scalar dynamical field,

which significantly reduces the complexity of experimental
realization compared to systems with higher number of
bands. One possibility is implementation in an actual
discrete mechanical system. The out-of-plane displacement
may then be achieved by constraining weights, horizontally
connected to nearest neighbors by prestressed harmonic
springs, to move on vertical shafts through linear bearings.
The spring constant needs to be tuned carefully to balance
between friction reduction and dominance over gravity. An
alternative implementation is by an acoustic pressure field
created in a two-dimensional waveguide by an array of
loudspeakers. In both scenarios, the feedback control
system in Eqs. (3)–(6) is realized by an autonomous
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microcontroller that processes the measurements at corre-
sponding next-nearest-neighbor locations.
Next we demonstrate that the mechanical system (2)

governed by the classical analog of the Haldane model
Hamiltonian (1), which we created with the control system
(4)–(6), reproduces all the known dynamic properties of the
quantum Haldane model. This is not obvious, since the
complex-valued couplings are retained only upon reaching
the time-harmonic regime. The first property that
we analyze is the band structure, here the acoustic
dispersion, of an infinite lattice. Since Eq. (2) represents a
classical-mechanical system, the eigenvalues are squared
frequencies. The frequencies are kept real and positive due
to the constant shift of the dispersion curves by the addition
of β ¼ 3t1 to the σ0 term in Eq. (1). Since this addition does
not change the eigenvectors, the metamaterial preserves
the topological properties of the original quantum Haldane
model. We consider, for example, fϕ ¼ π=3;M ¼ 0;
t2 ¼ 0.2t1g, which falls within the nontrivial topological
regime of Chern number n ¼ þ1, according to the phase
diagram of the quantum Haldane model [2]. The corre-
sponding band structure is depicted in Fig. 2. The fre-
quency scale is normalized by ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
t1=m0

p
. See the

Supplemental Material [47] for a different set of parameters
and for the actual parameter scale. Similar to the quantum
system, the band structure is not symmetric between the
Γ −M − K − Γ and the Γ −MT − KT − Γ trajectories.
Next we verify the reproduction of the quantum edge

mode dispersion. Now our lattice is infinite in x but finite
in the y direction. The dispersion diagram of an eight
honeycomb cells strip is plotted in Fig. 3(a). As expected
for the Haldane model, a state emerges inside the bulk band
gap, corresponding to top edge propagation with negative
group velocity (Sn point) and to bottom edge propagation
with positive group velocity (Sp point). The eigenmodes
associated with these counterpropagating chiral edge states
are depicted in Figs. 3(b) and 3(c). The wave localization
on the lattice edge is guaranteed by the topological property
of the band structure.
Recently, a modified version of the Haldane model was

proposed [35–38]. Here, both top and bottom edge modes

propagate in the same direction, compensated by bulk
modes that propagate in the opposite direction. Such
antichiral edge states can exist in two-dimensional lattices
if the bulk band structure is gapless, as the number of left
and right moving modes in a finite system must be the
same. A significant suppression of backscattering is pro-
vided for the edge modes due to their spatial separation
from the bulk modes, whereas the bulk modes diffuse
across the lattice width. To obtain the modified Haldane
model, one needs to flip the direction of the complex-
valued next-nearest-neighbor couplings of one of the unit
cell sites, e.g., of the B site in Fig. 1(a). The resulting
mechanical analog is a two-band non-Newtonian system,
similar to the original Haldane model, and can be realized
in mechanical systems only with a feedback mechanism.
The finite lattice band structure and the corresponding
controller are given in the Supplemental Material [47].
We now demonstrate that our metamaterial supports

unidirectional edge wave propagation, as expected for both
the original and the modified Haldane models. We perform
two dynamical simulations of a finite size metamaterial
(20 × 40 honeycomb net), which is operated in a real-time
feedback loop; see Fig. 4. Fixed boundary conditions along
all edges are assumed, and the actuation frequency is set to
ω ¼ 1.55ω0. The system is excited by a time-harmonic
force FðtÞ ¼ F0eiωt in the a3 direction at the middle of the
top and bottom edges, as indicated by the blue arrows in the
figure. Closed-loop time responses of the masses out-of-
plane displacements ui;jðtÞ (normalized by F0) are shown
at two time instances, T1 < T2. At these times the control
transients converged, and the system reached its dynamical
steady state.
Figures 4(a) and 4(b) correspond to control program 1,

creating the Haldane model (1), according to Eqs. (2)–(6)
with ft2 ¼ 0.2t1;ϕ ¼ π=3;M ¼ 0g. Here the actuation
frequency lies inside the bulk band gap. One clearly sees

(b)(a)
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FIG. 2. Infinite lattice dispersion relations of the Haldane
model mechanical analog. Dispersion diagram with parameters
ft2 ¼ 0.2t1;ϕ ¼ π=3;M ¼ 0g is plotted over the entire Brillouin
zone (a) and through the high symmetry points (b).
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FIG. 3. Edge modes of the mechanical Haldane model.
(a) Dispersion diagram of a lattice infinite in the x direction
and of eight honeycomb cells in the y direction. Black lines
indicate bulk states. The red (blue) line indicates top (bottom)
edge state with negative (positive) group velocity. (b),(c) Corre-
sponding eigenmodes of top and bottom edge states.
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that at the top (bottom) edge the wave propagates to the left
(right) corresponding to the Sn (Sp) point in Fig. 3(a).
Because of topological protection, the wave circumvents
the sharp lattice corners without any backscattering.
Figures 4(c) and 4(d) correspond to control program 2,
creating the modified Haldane model with ft2 ¼ 0.1t1;
ϕ ¼ π=3;M ¼ 0g. As expected, both edge waves propa-
gate to the left, and simultaneously, there are two bulk
waves of a considerably reduced intensity that are swept to
the right.
To summarize, we proposed and analyzed a general

feedback-based method for realizing topological mechani-
cal metamaterials with arbitrary responses that are not
constrained by Newton’s laws of motion. As an example,
we implemented two topological two-band systems
analogous to the quantum Haldane, and the modified
Haldane model, in a classical-mechanical metamaterial.
The required non-Newtonian complex-valued directional
couplings between masses were generated via autonomous
real-time control. We demonstrated that the resulting
systems have all the properties of the quantum models,
and support the expected wave propagation along the
metamaterial edges. The method is general, and could be
programmed to implement a wide variety of topological
models in classical systems, relying both on Newtonian and
non-Newtonian dynamics. To stress this point, in the
Supplemental Material [47] we designed a pseudospin

multipole topological insulator on the same hardware
platform, yet with different feedback software. The result-
ing system mimics the quantum spin Hall effect [29], but
without any spinning elements, using out-of-plane
d.o.f. alone.
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