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We study the interplay of spin and charge degrees of freedom in a doped Ising antiferromagnet, where
the motion of charges is restricted to one dimension. The phase diagram of this mixed-dimensional t − Jz
model can be understood in terms of spinless chargons coupled to a Z2 lattice gauge field. The
antiferromagnetic couplings give rise to interactions between Z2 electric field lines which, in turn, lead to a
robust stripe phase at low temperatures. At higher temperatures, a confined meson-gas phase is found for
low doping whereas at higher doping values, a robust deconfined chargon-gas phase is seen, which features
hidden antiferromagnetic order. We confirm these phases in quantum Monte Carlo simulations. Our model
can be implemented and its phases detected with existing technology in ultracold atom experiments.
The critical temperature for stripe formation with a sufficiently high hole concentration is around the
spin-exchange energy Jz, i.e., well within reach of current experiments.
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Introduction.—Ultracold atoms in optical lattices pro-
vide an excellent platform to perform analog quantum
simulations: they can mimic the behavior of tunable model
Hamiltonians that are difficult or impossible to solve with
current numerics. Since the advent of quantum simulators,
an application to the 2D Fermi-Hubbard model has been a
central goal: This model is believed to describe some of the
most essential but theoretically poorly understood proper-
ties of strongly correlated electrons in the context of high-
temperature superconductors. In the past years, significant
steps have been taken towards simulating the Hubbard
model, including the observation of long-range [1] and
canted [2] antiferromagnetism (AFM), bad metallic [3] and
spin [4] transport, magnetic polarons [5,6], string patterns
[7,8], and in 1D spin-charge separation [9,10] and incom-
mensurate magnetism [11]. Nevertheless, the critical tem-
peratures of the expected ordered phase (stripes [12],
superconductivity [13]) are too low and have not yet been
reached in ultracold fermion experiments.
In this Letter we make use of the versatility of ultracold

atoms to study a closely related cousin of the 2D Hubbard
model. Its two main advantages are (i) significantly
enhanced critical temperatures for the formation of stripe
order amenable to quantum simulation and (ii) thorough

theoretical understanding and numerical control of the
underlying physics. Both (i) and (ii) provide a promising
starting point, in experiment and theory, for a systematic
exploration of the 2D Hubbard model.
Specifically, we consider a t − Jz model with mixed

dimensionality [14] as elucidated in Fig. 1(a),

Ĥ ¼ −t
X
σ;hi;jix

P̂ðĉ†i;σ ĉj;σ þ H:c:ÞP̂ þ Jz
X
hi;ji

Ŝzi Ŝ
z
j : ð1Þ

The dopants (holes) are free to move only along the x
direction, with tunneling rate t, while nearest-neighbor
(NN) AFM Ising interactions between the spins, of strength
Jz, are present along all dimensions of the lattice. In Eq. (1)
hi; ji denotes a pair of NN sites in a two-dimensional square
lattice (every bond is counted once in the sum). Similarly,
hi; jix denotes a nearest neighbor bond oriented along the x
axis. We consider a two-component mixture of particles ĉj;σ
with a hard-core constraint imposed by the projector P̂ onto
the subspace without double occupancies. The statistics of
the particles ĉj;σ plays no role: By introducing Jordan-
Wigner strings along the chains in the x direction one can
switch between fermions and bosons.
Symmetries and mapping to Z2 lattice gauge theory.—

Since holes cannot tunnel along y, their number Nh
y is

conserved in each chain y. In the following we restrict
ourselves to equal doping nh in every chain, Nh

y ¼ nhLx
with the system size LxðyÞ along x (y). In addition to the
global Uð1Þ⊗Ly charge-conservation symmetries, and the
conservation of total spin

P
j S

z
j , the system exhibits hidden

symmetries. Namely, when the holes move they only
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change the positions of the spins in the 2D lattice, while it is
impossible to permute their configurations within any given
chain. This is formalized by the notion of squeezed space,
introduced to describe 1D doped spin chains [15,16]:
To this end Fock states ⊗y jσð1;yÞ;…; σðLx−1;yÞ; σðLx;yÞi,
with σj ¼ ↑; h;↓ denoting local spin and charge
configurations, are relabeled by ⊗y jσ̃ð1;yÞ;…; σ̃ðL̃x;yÞi ⊗
ĥ†ðx1;yÞ…ĥ†ðxNh

y
;yÞj0i; Now σ̃j ¼ ↑;↓ denotes spins only on

sites x̃ ¼ 1…L̃x ¼ Lx − Nh
y and ĥ†j creates a hard-core

chargon with the same statistics as ĉj;σ on the sites occupied
by holes. The spin states in squeezed space are related to
spins in the lattice by

σ̃ðx̃; yÞ ¼ σ

�
x̃þ

X
j<x̃

nhðj;yÞ; y
�

≠ h; ð2Þ

where nhj denotes the chargon occupation numbers.
After this relabeling, the eigenfunctions of Eq. (1)

become jΨi ¼ jΨ̃i ⊗ jΨci, where jΨ̃i ¼ jfσ̃ j̃gj̃i denotes
a Fock configuration of spins in squeezed space and jΨci is
a (generally correlated) chargon wave function [15]. Since
we consider classical Ising interactions, every Fock con-
figuration jΨ̃i defines a separate hidden-symmetry sector of
Ĥ. In the following we restrict ourselves to Néel states in
squeezed space: jΨ̃i ¼ jNi≡ j…↑↓↑…i, with long-range
antiferromagnetic correlations along the x and y directions.

If projected to the subspace jΨ̃i ¼ jNi, the Hamiltonian
for the chargons (with density n̂hj ¼ ĥ†j ĥj) becomes

Ĥ ¼ −t
X
hi;jix

ðĥ†i ĥj þ H:c:Þ þ Ĥint½fn̂hj g�; ð3Þ

where the sign of the tunneling term is irrelevant.
To express the nonlocal (but instantaneous) interaction

energy Ĥint½fn̂hj g� in a compact form, we introduce the
following string operators,

τ̂xhj;jþexix ¼
Y

i∶ix≤jx

ð−1Þn̂hi : ð4Þ

By definition, each pair of holes is connected by a string of
link variables τxhi;ji ¼ −1 [see Fig. 1(a)] and the following
Z2 Gauss law is satisfied for all sites j:

ĜjjΨi ¼ jΨi; Ĝj ¼
Y
i∶hi;jix

τ̂xhi;jix : ð5Þ

Owing to this Gauss law, the two link variables including
a site j occupied by a spin σj are equal, τxhj−ex;jix ¼
τxhj;jþexix ¼ ð−1Þπj . Their value is given by the sublattice

parity πj ¼ 0, 1 of this spin, i.e., the number of times mod
2 the spin has switched sublattice (starting from a Néel state
with all holes located on the right edge).
The Ising interaction between neighboring spins hi; jiy

along y can be expressed in terms of the sublattice parities,
JzŜ

z
i Ŝ

z
j ¼ −Jzð−1Þπiþπj=4, since we use jΨ̃i ¼ jNi. Along

the chains each bond hi; jix gives JzŜ
z
i Ŝ

z
j ¼ −Jz=4 unless

one of the sites is occupied by a chargon.
We proceed by promoting the link variables to a Z2

lattice gauge theory (LGT) subject to the Z2 Gauss law (5).
This requires adding a term τ̂zhi;jix in the tunneling term

in Eq. (3) which correctly flips the sign of τxhi;jix , i.e.,

τ̂zhi;jix jτxhi;jixi ¼ j − τxhi;jixi. Note that theZ2 electric field τ̂xhi;jix
has a concrete physical meaning as it can be measured from
the local spin configuration.
Finally, we arrive at the exact representation of Eq. (1), in

the sector jΨ̃i ¼ jNi, by a Z2 LGT,

Ĥ ¼ −A
Jz
4
− t

X
hi;jix

ðĥ†i τ̂zhi;jix ĥj þ H:c:Þ þ Jz
2

X
j

n̂hj

−
Jz
4

X
hi;jix

n̂hi n̂
h
j − α

Jz
8

X
hi;jiy

ð1 − n̂hi Þð1 − n̂hj Þ

½τ̂xhi−ex;iix τ̂xhj−ex;jix þ τ̂xhi;iþexix τ̂
x
hj;jþexix �; ð6Þ

where A ¼ LxLy is the total area. We introduced the
dimensionless interchain coupling parameter α, which is
α ¼ 1 for our model in Eq. (1).
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FIG. 1. The mix-D t − Jz model with tunneling t along x and
Ising couplings Jz in both directions can be mapped to coupled
1DZ2 LGTs. (a) With a classical Néel background theZ2 electric
field lines τxhi;jix ¼ −1 denote regions where spins switch sub-
lattice. (b) The phase diagram (here parton mean-field results for
t=Jz ¼ 3 are shown) contains stripes, a confined meson gas, and a
deconfined chargon gas.
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Many-body phase diagram.—Figure 1(b) shows the
phase diagram of the model in Eq. (6) as a function of
temperature kBT and doping nh. The phase boundaries are
estimated using a parton-based mean-field description; note
that our calculations for the stripe and meson regimes are
restricted to low enough dopings to assume pointlike
constituents, which leads to unphysical cusps and reen-
trances associated with stripes. See Ref. [17] for details.
Each phase is also found in our quantum Monte Carlo
(QMC) simulations.
For the ground state (T ¼ 0) we predict a vertical stripe

phase, characterized by charge modulations with wave-
length λ ¼ 1=nh. The Z2 electric field changes sign across
each stripe, respecting the Z2 Gauss law.
As a result, incommensurate long-range spin correlations

are found along x, see Fig. 2(a):

CXðdÞ≡ 4hŜzj Ŝzjþdex
i≃ νXS cos½πð1þnhÞd�; d→∞: ð7Þ

The binding mechanism into stripes can be readily under-
stood from Eq. (6): The interactions of the Z2 electric field
lines favor alignment of the latter along y, which is
achieved by creating strong charge correlations along the
y direction. Such localization along y is cheap due to the
absence of chargon tunneling in this direction. On the other
hand, strong antibunching along x allows each chargon to
delocalize as much as possible, in direct competition with
the attraction of Z2 electric field lines.

As shown in Fig. 2(b), stripes are indeed characterized
by long-range AFM order in the y direction (corresponding
to aligned Z2 electric field lines):

CYðdÞ≡ 4hŜzj Ŝzjþdey
i ≃ νYSð−1Þd; d → ∞: ð8Þ

Numerically, we find that long-ranged correlations CYðdÞ
develop below a nonzero critical temperature TS > 0. Our
QMC simulations in Figs. 2(c) and 2(d) show that kBTS ≈
1.0ð5ÞJ for the chosen value of t=Jz ¼ 3 and 20% hole
doping for linear system size L ¼ 15.
Within each chain our system has a conserved number of

holes, associated with separate Uð1Þ symmetries. In the
long-wavelength limit, the corresponding effective field
theory describes a Uð1Þ symmetric field without quantum
fluctuations of the charge along y. Integrating out thermal
fluctuations at temperatures kBT > 0 yields an effective
action of a 1þ 1 dimensional quantum system. With the
global Uð1Þ symmetry along y, we thus expect power-law
correlations along x and y in the stripe phase: Below the
critical temperature for stripe formation, TS > 0, these
replace the infinite-range correlations Eqs. (7), (8) expected
in the true ground state.
We find that our finite-size simulations with open

boundaries are consistent with very weak power-law
correlations CYðdÞ when 0 < T ≲ TS. The detailed nature
of the transition at TS remains a subject of future inves-
tigation, but we expect it to be in the BKT class.
At higher temperatures and beyond a rather small critical

doping value nh ≥ nchðTÞ we predict a chargon gas. It has
no long-range AFM order in either direction, CXðdÞ,
CYðdÞ → 0 as d → ∞. The loss of antiferromagnetism is
entirely due to chargon dynamics, however: in squeezed
space the spin wave function is still the classical Néel state.
Hence the chargon gas is characterized by its hidden AFM
order, which manifests itself in the nonlocal string corre-
lations defined by the Z2 Gauss law (5). Related string
correlations have been observed in 1D Hubbard models
[9,22] and are commonly used to characterize topological
order in 1D systems [23,24].
In contrast to the stripe phase, the chargon gas is

characterized by a disordered Z2 electric field:

ehi;jix ≡ hτ̂xhi;jixi ¼ 0: ð9Þ

Chargons are hence deconfined and form a gapless phase
[25], corresponding to free fermionic holes at the mean-
field level.
Finally, at very low doping nh < nchðTÞ, but above the

critical temperature T > TSðnhÞ for stripe formation, we
predict a meson gas. It is characterized by a uniform Z2

electric order parameter

ehi;jix ≡ hτ̂xhi;jixi ¼ νcc ≠ 0: ð10Þ
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FIG. 2. Stripe formation: QMC simulations of Eq. (6) reveal the
onset of stripe order at low temperatures. We show CXðdÞ in
(a) [CYðdÞ in (b)] relative to the central column (chain) at d ¼ 0
for kBT ¼ 0.6Jz. (c) For different temperatures we show
how long-range AFM spin correlations ð−1ÞdCYðdÞ develop
perpendicular to the chains; CYðdÞ is measured relative to the
central chain. The correlator at a large distance d ¼ 10 is shown
in (d). We consider a 30 × 30 system (open boundaries), 6 holes
per chain, and t=Jz ¼ 3.
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This should be contrasted to the T ¼ 0 stripe phase with
incommensurate magnetism, where ehi;jix ≠ 0 is modulated
in space with a wavelength λ ¼ 2=nh, such thatP

hi;ji ehi;jix ¼ 0; in the stripe phase at 0 < T < TS the
thermal average ehi;jix ¼ 0 is expected to be strictly zero in
the thermodynamic limit. As a direct consequence of
νcc ≠ 0, the meson gas has commensurate long-range
AFM order along both directions,

CXðdÞ; CYðdÞ → ð−1Þdν2cc; d → ∞: ð11Þ

Physically, the meson gas can be understood as a paired
phase of chargons. The Z2 electric string connecting two
chargons is associated with a linear string tension ∝ νcc,
which precludes one-chargon excitations in the thermo-
dynamic limit; i.e., the meson gas corresponds to a
confined phase which has, even in the zero-temperature
limit, hĥ†j ð

Q
j≤hi;kix≤jþdex τ̂

z
hi;kixÞĥjþdexi ≃ e−ηd for d → ∞.

Because of the restriction of chargon dynamics along
one direction, the meson gas also corresponds to a
Luttinger liquid with fractionalized excitations in the
zero-temperature limit [25].
To identify the meson gas phase in our QMC numerics,

we calculate histograms of chargon separations in Fig. 3.
The hallmark of chargon-chargon meson formation is a
narrow distribution p2n−1;2nðrÞ of separations r between
chargon numbers 2n − 1 and 2n, with n ¼ 1; 2;… and
counting from the left edge, and a broader and different
distribution p2n;2nþ1ðrÞ between chargons 2n and 2nþ 1.
This feature is clearly visible in Fig. 3(a) in the expected
low-doping regime, where we also find a nonvanishing Z2

electric order parameter, hτ̂xhi;jixi ¼ 0.8842ð8Þ. In the other
two phases, the histograms show significantly different
features, see Figs. 3(b), 3(c).
In the phase diagram, the meson gas is associated with an

unusual reentrant behavior as one increases temperature
along a line of constant, but small, doping: at T ¼ 0 the
system has incommensurate long-range AFM correlations,
which we predict to be destroyed by thermal fluctuations of

the stripes when 0 < T < TS. When the meson gas phase is
entered for T > TS, true long-range AFM correlations are
restored. This counterintuitive behavior is possible since
AFM correlations are merely hidden in the intermediate
fluctuating stripe regime.
Finally, we want to make a connection with Ref. [14],

where a single mobile dopant but with SUð2Þ invariant
Heisenberg interactions has been studied. It was found that
the hole forms a magnetic polaron [5,26–28] that can be
understood as a mesonlike bound state of a spinon and a
chargon [29] connected by a geometric string of displaced
spins [14]. Our meson phase is an analog of this finding but
at finite hole concentration and for Ising-type interactions.
Methods.—Our calculations are based on a number of

different but standard techniques such as bosonization,
mean-field parton theory, and QMC simulations.
In order to work with a 1D field theory amenable to

bosonization, our crucial approximation is the decoupling
ansatz

τ̂xhi;iþexix τ̂
x
hj;jþexix ≈ VMFðixÞ½τ̂xhi;iþexix þ τ̂xhj;jþexix �; ð12Þ

for hi; jiy NN along y, i.e., ix ¼ jx. The different phases
correspond to different solutions for VMFðixÞ. These
approximations are justified because we find the same
phases in the quantum Monte Carlo simulations. We find
the critical Luttinger parameter below which the ground
state forms stripes to be large, Kc ¼ 8. We refer to the
Supplemental Material [17] for details.
Discussion and outlook.—In summary, we showed that

the mix-D t − Jz model can be directly mapped onto a Z2

LGT. The many-body phase diagram of our model features
in the ground state a stripe phase where the holes form
vertical walls. Above a critical temperature TS, but within
the Néel Z2 gauge sector (which has the lowest energy at
zero doping), we find two gaseous phases: a confined
meson gas, with long-range AFM order, and a deconfined
chargon gas with hidden AFM correlations.
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FIG. 3. Chargon distance histograms. We plot the distributions pn;mðrÞ of separations r between chargons number n and m in the
chains, counting from the left. In the meson gas phase (a) p1;2ðrÞ ¼ p3;4ðrÞ is significantly broader than p2;3ðrÞ, a direct indication for
pairing. In the stripe phase (b), p1;2ðrÞ ¼ p2;3ðrÞ ¼ p3;4ðrÞ ¼ … are equal and all distributions are narrow, indicating localization of
chargons into stripes. (c) In the chargon gas phase, p1;2ðrÞ ¼ p2;3ðrÞ ¼ p3;4ðrÞ ¼ … and all distributions feature long tails. In all
simulations we used an 80 × 10 system (other parameters as indicated).
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Experimentally, the model Eq. (1) can be realized in the
large U=t limit of a bosonic Hubbard model with a strong
tilt Δ ≫ t along the y direction: The strong tilt suppresses
resonant tunneling of dopants along y, whereas the
superexchange mechanism remains intact in both directions

]14,30 ]; to obtain AFM Ising interactions, one can use spin-
dependent scattering lengths [30,31]. Rydberg atoms,
which have already demonstrated Ising spin systems
[32–37], are an alternative option: By using multiple
hyperfine levels to encode both spin and charge degrees
of freedom, our mix-D t − Jz model should also be
realizable; see also Ref. [38] for a discussion of generic
t − XYZ models in polar molecules, and Refs. [39–42] for
direct implementations of Z2 LGTs. For all systems, we
propose to start from a classical Néel state without holes,
which can be doped with mobile charges, e.g., by adiabatic
deformations of the trapping potentials. This should guar-
antee that thermal fluctuations outside the gauge sector of
our Z2 LGT are negligible.
In spite of the overwhelming simplifications of our

model, the presence of a stripe phase and a confine-
ment-to-deconfinement transition at elevated temperatures
draws one’s attention to the cuprates. A goal for future
investigations is to study related models which are more
closely related to the 2D t − J model: as a first step, other
gauge sectors with domain walls in squeezed space—
corresponding to spinons—can be considered. By replac-
ing Ising interactions with SUð2Þ invariant Heisenberg
couplings, a much richer model is expected and it remains
to be seen if any connections to Z2 LGTs can be drawn.
Finally, the goal is to include charge dynamics along the
second direction: this may provide an adiabatic route to the
stripe phase observed in cuprates.
Numerical data for this Letter are available [43].
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