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We determine the phase diagram of excitons in a symmetric transition-metal dichalcogenide 3-layer
heterostructure. First principles calculations reveal interlayer exciton states of a symmetric quadrupole,
from which higher energy asymmetric dipole states are composed. We find quantum phase transitions
between a repulsive quadrupolar and an attractive staggered dipolar lattice phases, driven by a competition
between interactions and single exciton energies. The different internal quantum state of excitons in each
phase is a striking example of a system where single-particle and interacting many-body states are coupled.
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Introduction.—The quantum ground state of many-body
systems is determined by a nontrivial interplay between
interparticle interactions and the delocalization induced by
the kinetic energy. When interactions between particles
are extended in space (e.g., in the case of dipolar particles),
the many-body system may display significant particle
correlations [1–3]. These many-body correlations can lead
to exotic effects such as Roton instabilities [4] and super-
solidity, both recently observed in ultracold gases of
dipolar atoms [5–10]. In semiconductor quasiparticle sys-
tems, collective correlated phases of interacting dipolar
excitons in 2D heterostructures were observed, first in
GaAs bilayers [11–16], and more recently in van der
Waals (vdW) heterostructures [17,18].
Quite generally, the form of interaction is encoded in the

intrinsic properties of the elementary constituents deter-
mined by the internal structure, hence the interaction
remains a static property. In typical realizations of dipolar
atoms or excitons, the size and orientation of the dipole
moment are fixed and set by an external field (magnetic or
electric). Specifically for spatially indirect (interlayer) exci-
tons, which are quasiparticles formed by binding of excited
electrons and holes residing in adjacent layers, the magni-
tude and orientation of the dipolemoment are determined by
the structural composition. This in turn dictates the exciton-
exciton interactions. In this regard, heterostructure systems
have an intrinsic decoupling between the single particle state
and the collective state of many particles.
In this Letter, we study theoretically excitons in a tran-

sition-metal dichalcogenide (TMD) trilayer heterostructure,
and find a new phenomenon of coupling between internal
particle properties and themany-body state,making the single
particle structure and the particle-particle interaction dynami-
cal parameters rather than static ones. We show that this
unique situation gives rise to a quantum phase transition

between two symmetry distinct phases, each made of
completely different elementary exciton quasiparticles: a
nonpolar, weakly interacting many-body state at lower
particle densities, a staggered dipolar state with strong
interactions at higher densities, and a phase instability leading
to a droplet phase.
Single quadrupolar and dipolar excitons.—TMD heter-

ostructures composed of stacked TMD monolayers have
been shown to host long-lived excitons, a consequence of
suppressed overlap between the wave functions in separate
layers [19–28]. A commonly explored heterojunction is a
bilayer composed of WSe2 and MoSe2 monolayers, where
the conduction electrons and valence holes are localized at
separate layers, resulting in interlayer excitons with a fixed,
oriented electric dipole moment [29–35]. Here we consider
a trilayer stack, obtained by adding a second WSe2 layer—
forming the WSe2=MoSe2=WSe2 structure depicted in
Fig. 1(e). Trilayer stacks, studied in photoluminescence
[36,37], show indications of shortened exciton lifetime due
to the enhanced wave-function overlap between the elec-
tron, which resides at the central MoSe2 layer, and the hole,
which is symmetrically delocalized between the two WSe2
layers [37]. The interplay between such a hole-delocalized,
quadrupolar exciton and the bilayer dipolar excitons results
in a rich many-body phase diagram.
To find the lowest lying exciton states, we start by

computing the single particle band structure using a many-
body perturbation theory within the GW and Bethe-
Salpeter equation (GW-BSE) approximation [38–40].
The full computational details are given in Ref. [41].
Figure 1(a) shows the quasiparticle band structure of the
trilayer system. Notably, the valence K valley is split
into upper and lower bands. The upper (with energy Eþ

h )
corresponds to the z-symmetric hole state ψþ

h , which
includes significant hole distribution on the MoSe2
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layer. The lower (with energy E−
h ) corresponds to the

z-antisymmetric hole state ψ−
h , where these contributions

are absent [Fig. 1(b)]. The energy split between the two
bands at the K point (shown in the inset), Δ� ¼ Eþ

h − E−
h ,

is analogous to that of the bonding and antibonding orbitals
in a double-well system [see blue and red cross sections in
Fig. 1(d)]. As Δ� depends on the interlayer distance d,
we allow for possible variation in d, yielding Δ� ¼
20–60 meV (see Supplemental Material [41]). We note
that the valence band split is not due to spin-orbit
interactions, and exists in both spin channels.
An interlayer exciton is formed by, e.g., a direct optical

excitation of an electron from the valence to conduction
band at the K valley. We assume that the timescale for
scattering into other valleys is long, and focus on K-valley
processes alone. The lowest lying single exciton bound
state, denoted ψþ

X , with excitation energy Eþ
X ¼ 1.05 eV

[Fig. 1(c)], is composed of a K-valley conduction electron
state, ψe, spatially localized in the central MoSe2 layer, and a
K-valley valence hole state, ψþ

h , with a wave function
delocalized in the z direction between the symmetric top
and bottom layers (see Ref. [41]). The second exciton state,
ψ−
X, with excitation energy E

−
X ¼ 1.1 eV, is composed of ψe

and ψ−
h . Contrary to the bilayer exciton picture, ψ�

X have a
zero dipole and a finite quadrupole moment [shown sche-
matically in Fig. 1(e), left] and are therefore named quad-
rupolar excitons. The exciton binding energies of the two
quadrupolar states are given by E�

b ¼ Ee þ E�
h − E�

X. Our
calculation shows that thebinding energiesEþ

b andE−
b , for the

symmetric and antisymmetric quadrupole excitons, respec-
tively, are almost identical (0.36 and 0.35 eV). The difference

between the energies of two quadrupolar excitons is therefore
very close to the valence band split, Eþ

X − E−
X ≈ Δ�.

We now turn to the construction of the K-valley dipolar
states, ψu

X and ψd
X, as in a double-well model, as shown in

Fig. 1(d). To do that, we construct hole states localized in

the top (bottom) layer, ψuðdÞ
h , by adding and subtracting the

two delocalized hole states: jψuðdÞ
h i¼ð1= ffiffiffi

2
p Þðjψþ

h i�jψ−
h iÞ

(where we assume opposite phases at the different WSe2
layers in ψ−

h ), with energies Eu
h ¼ Ed

h ¼ 1
2
ðEþ

h þ E−
h Þ. The

dipolar exciton states ψuðdÞ
X are then constructed by an

electron state ψe and a hole state ψuðdÞ
h , localized in the

upper (lower) layer: jψuðdÞ
X i ¼ ð1= ffiffiffi

2
p Þðjψþ

X i � jψ−
XiÞ.

These excitons, depicted on the right side of Fig. 1(e)
have a nonvanishing electric dipole moment, each poin-
ting in an opposite direction. Since Eþ

b ≈ E−
b , and the

dipolar excitons are linear superpositions of the quadru-
polar excitons, the binding energies of the two types of

dipolar excitons, EuðdÞ
b , are approximately equal to those

of the quadrupolar excitons. Thus the energy of both

dipolar exciton states is given by EuðdÞ
X ¼ Ee þ EuðdÞ

h −
EuðdÞ
b ≈ Ee þ EuðdÞ

h − E�
b . The energy gap between the

hole-symmetric quadrupolar exciton and the dipolar exci-
tons, ΔDQ, can therefore be evaluated to be

ΔDQ ¼ EuðdÞ
X − Eþ

X ≈ EuðdÞ
h − Eh;þ ¼ Δ�=2; ð1Þ

which yields ΔDQ ¼ 10–30 meV for the above layered
structure. In what follows, we will show that ΔDQ is
an important parameter affecting the possible ground

(a)

(b)

(c) (d)

(e)

FIG. 1. (a) Calculated GW quasiparticle band structure of the WSe2=MoSe2=WSe2 heterostructure. The inset shows the valence
energy split at the K region (Δ�). (b) Quasiparticle wave functions of the two split valence bands at K, and the corresponding schematic
representation of a double-well symmetric and antisymmetric wave functions. (c) Exciton transition energies diagram for the two low
lying excitons with energies Eþ

x and E−
x , composed of v → c and v − 1 → c transitions, with binding energies Eþ

b and E−
b , respectively.

(d) Spatial cross section along the z direction of the probability density of the hole wave function in the quadrupolar (jψþð−Þ
h j2) and

dipolar exciton states (jψuðdÞ
h j2). (e) Schematic illustration of dipolar (pkz, pk − z) and quadrupolar (p ¼ 0) exciton states.
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states in the many-exciton limit. SinceEþ
X < EuðdÞ

X < E−
X, in

the following we only focus on the lowest energy
hole-symmetric quadrupole exciton ψþ

X , and the two

degenerate dipolar excitons ψuðdÞ
X .

Finite density of excitons: Phase transitions at T ¼ 0.—
With the quadrupolar and dipolar single exciton states
established, we now turn to discuss the many-body phase
diagram at finite exciton density, n.
In constructing our effective low-energy description, we

consider only the dilute exciton limit, where the typical
interexciton distance is significantly larger than the exciton
size (set by the electron-hole bound state). This allows us to
treat excitons as pointlike bosonic quasiparticles and safely
neglect corrections arising due to fermionic exchange [16].
The two dipolar states ψu;d

X can be conveniently parametrized
by an Ising degree of freedom jσz ¼ u; di. The exciton
dynamics is governed by the Hamiltonian (setting ℏ ¼ 1),

H¼−
1

2mx

X
i

∇2
i þ

X
i<j

Vd
σzi ;σ

z
j
ðjrj−rijÞ−ΔDQ

X
i

σxi : ð2Þ

In the above equation, i labels excitons and mx denotes
the effective in-plane exciton mass. The layer dependent
dipolar interaction reads

Vd
σzi ;σ

z
j
ðrÞ ¼ Vp;pðrÞδσzi ;σzj þ Vp;−pðrÞδσzi ;−σzj ;

Vp;pðrÞ ¼
e2

κ

�
2

r
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
�
;

Vp;−pðrÞ ¼
e2

κ

�
1

r
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ð2dÞ2
p −

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
�
: ð3Þ

Here, Vp;p and Vp;−p denotes the electrostatic energy
associated with a parallel [ðu; uÞ or ðd; dÞ] and antiparallel
[ðu; dÞ or ðd; uÞ] configuration of two dipolar excitons. d is
the interlayer distance and κ is the effective dielectric
constant, taken from our GW calculation as the dielectric
function at the interaction distance corresponding to
the interlayer separation [41]. The operator σxjui ¼ jdi,
σxjdi ¼ jui locally flips the dipole moment orientation. We
note that the Hamiltonian affords a Z2 Ising symmetry
corresponding to a global flip of the dipole moment
orientation σzi → −σzi for all i.
To highlight the interplay between dipolar and quad-

rupolar states, we quench the in-plane exciton dynamics,
namely, e2

ffiffiffi
n

p
=κmx ≪ 1. In this limit, the ground state is

determined by a competition between the electrostatic
energy and the quantum dynamics of the dipole orientation,
as described by the second and third terms in Eq. (2),
respectively.
The typical scale of the potential energy term of the

Hamiltonian is e2=κd, and of the quantum dynamics
is ΔDQ, suggesting a dimensionless parameter as their ratio:

R ¼ ΔDQκd=e2. The zero-temperature ground state of the
many particle system is determined in a two-parameter phase
diagram controlled by R and n. To gain insight into the
possible competing phases, we begin by establishing the
ground state configuration in the various parameter limits,
and then analyze the boundaries between these phases.
First, we consider the limiting case R → ∞ for any finite

density n. In this case the last term in Eq. (2) dominates.
Consequently, strong quantum fluctuations in the dipole
moment orientation favor a fully quadrupolar ground
state, jψþ

X i ¼ jþi ¼ ð1= ffiffiffi
2

p Þðjui þ jdiÞ. Since quadropolar
electrostatic interactions, ðþÞ ↔ ðþÞ, are purely repulsive,
minimizing the electrostatic energy leads to a triangular
lattice structure [41] with broken translational symmetry;
see left panels of Fig. 2(d). In Fig. 2(a) we plot the total

(a) (b)

(c) (d)

FIG. 2. (a) Electrostatic interaction energy Eint
i vs the density of

excitons n. stg represents a staggered square lattice of dipolar
excitons, where nearest neighbors have antiparallel dipole mo-
ments. sym represents a triangular lattice of quadrupolar excitons.
The minimum energy (stg) appears at nd ≈ 0.12d−2. Dashed
black represents an uncorrelated exciton gas (see Ref. [41]).
(b) Total energy per particle Et

i (where i ¼ sym=stg) vs the
density of excitons n. GS represents the many body ground state
(black lines). Three different phase transitions are displayed: stg
droplet → stg lattice (R1 ¼ 0.01), sym lattice → stg droplet →
stg lattice (R2 ¼ 0.05), sym lattice → stg lattice (R3 ¼ 0.1).
(c) Phase diagram. R represents the ratio of the energy difference
between a dipolar and a quadrupolar single exciton state and the
potential energy scale e2=κd. Dashed gray lines represent the
upper and lower estimates for RWMW, the special case of a
WSe2=MoSe2=WSe2 trilayer. (d) Schematic illustration of the
competing phases in a three-layer structure with dipolar and
quadrupolar excitons.
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electrostatic energy per exciton, Eint
symðnÞ in the above

configuration. It is simple to show that it rises as Eint
sym ∼

n5=2 at low density, nd2 ≪ 1 (Supplemental Material [41]).
Next, we examine the high density nd2 → ∞ limit for

finite R, for which the electrosatic energy contribution in
Eq. (2) overwhelms all other terms and hence should be
minimized. A key observation is that in contrast to quadru-
poles which always repel, antiparallel dipoles, ðuÞ ↔ ðdÞ,
attract at long distances leading to an electrostatic energy
gain at all densities compared to the symmetric case, as is
seen in Fig. 2(a). Therefore at this limit, the system favors a
competing dipolar configuration comprising a staggered
pattern of dipole orientations; see the right panels of
Fig. 2(d). The particular choice of a square lattice (as opposed
to a triangular lattice, see Supplemental Material [41]) allows
avoiding the inherent frustration of staggered configurations
on nonbipartite lattices [56]. Importantly, the staggered state
not only breaks translational symmetry, but also the Ising
layer symmetry. The total electrostatic energy per exciton of
the staggered state,Eint

stgðnÞ, evolves nontrivially as a function
of density, see Fig. 2(a). At low densities, the energy turns
negative, Eint

stgðnÞ ∼ −n3=2. However, with increasing n, the
interaction energy increases and turns positive, due to the
short range repulsive interaction. The energy minimum is
obtained at nd ≈ 0.12d−2, at which the interaction energy
equals Eint

stgðndÞ ≈ −0.036e2=ðκdÞ.
Next, we turn to determine the phase boundaries sepa-

rating the staggered dipolar and layer-symmetric quadru-
polar states. To that end, we examine the total energy per
exciton Ei ¼ EX þ EintðnÞ, and compare the total energies
in the two competing states: Et

sym vs Et
stg. Clearly, this

variational approach is approximate, as it neglects quantum
fluctuations. We leave the question of determining their
role to a future study (see a discussion on zero-point
fluctuations in the Supplemental Material [41]).
In the layer-symmetric state the energy is simply given

by Et
symðnÞ ¼ Eint

symðnÞ, where for convenience we set the
overall energy reference scale, Eþ

X ¼ 0, to zero. By con-
trast, in the staggered dipolar lattice, in addition to the
electrostatic energy, one must also take into account the
energy contribution of the quadropolar to dipolar gap ΔDQ,
so that in total Et

stgðnÞ ¼ ΔDQ þ Eint
stgðnÞ. This energy

minimization procedure is illustrated in Fig. 2(b), where
we depict both Et

sym and Et
stg as a function of n for several

pertinent values of R.
We first consider the case of large but finite R. SinceΔDQ

and thus R are strictly positive, for sufficiently large R and
at low n, where interactions between excitons are negli-
gible, the symmetric quadrupole state ψþ

X will always be the
lowest energy state, as already discussed above. With an
increase of n, the electrostatic energy gain associated with
the staggered configuration eventually overwhelms ΔDQ.
Therefore, we expect to find a quantum phase transition, at

a critical density ncðRÞ, where the symmetric quadropolar
state gives way to a staggered dipole configuration.
Neglecting quantum fluctuations, the phase transition is
expected to be first order in nature (as opposed to the pure
Ising universality class), since in addition to breaking of
Ising layer symmetry the transition also involves a struc-
tural rearrangement, from a triangular to square lattice. The
precise phase boundary ncðRÞ is determined by carrying
out a numerical computation [41].
The above picture is correct for all R values for which

nc > nd. Interestingly, we further identify an additional
phase for R < Rc ¼ Rðnc ¼ ndÞ ≈ 0.076. This result fol-
lows directly from the nonmonotonous behavior of Eint

stgðnÞ.
As is depicted in Fig. 2(b), for any R < Rc, there is a
density nc < nd above which EstgðndÞ < EsymðnÞ. This
suggests that a homogeneous symmetric state with a
density n > nc is unstable towards a phase separation
and formation of a staggered dipolar droplet with a density
nd. The phase separation consisting of a staggered dipolar
droplet is sustained up to n ¼ nd, beyond which the droplet
fills the plane and the homogeneous staggered phase is
reached. Surprisingly, for R < 0.036, nc ¼ 0, and the
symmetric quadrupole phase is unstable for any density.
Schematic drawing and further analysis of the staggered
droplet phase is given in the Supplemental Material [41].
Figure 2(c) presents the general phase diagram of a three-

layer system as a function of R and n. Within our appro-
ximation, the triple point appears at ðnd; RcÞ. Dashed lines
represent the predicted possible range of RWMW and thus
the possible phases, for the special case of a system of
WSe2=MoSe2=WSe2 trilayer calculated above. This range
results from the uncertainty in calculating both ΔWMW and
κ, as discussed above [41]. This clearly demonstrates that
such quantum phase transitions are indeed relevant for the
TMD trilayer system.
Discussion and summary.—A complete understanding

of the low temperature phase diagram of our model will
require a refined analysis that takes into account the role
of quantum fluctuations and bosonic exchange statistics.
These effects may allow access to additional states of
matter such as various patterns of exciton condensates and
supersolids. Importantly, our many-body Hamiltonian,
Eq. (2), is amenable to an exact numerical solution using
quantum Monte Carlo techniques. These interesting direc-
tions are currently under pursuit.
From the experimental perspective, the symmetric and

staggered phases can be identified in optical spectroscopy:
(i) By monitoring the changes of the emission or absorption
energy with n, controlled by optical excitation power.
This way, the theoretically predicted different scaling of
EtðnÞ of each phase can be traced [see Fig. 2(b) and Fig. S8
in the Supplemental Material [41]], and the phase transition
can be detected as a sharp change of the slope of EtðnÞ.
In particular, the droplet phase would be characterized
by a regime where the recombination energy is density
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independent, and (ii) the radiative rate of quadrupolar
excitons is expected to be higher than dipolar excitons
due to the larger e-h overlap in the symmetric quadrupolar
exciton state [37]. This difference can be utilized to dis-
tinguish quadrupolar from dipolar phases, and finally,
(iii) the existence of single quadrupolar excitons can be
detected as a redshift of ΔDQ ∼ 30 meV of the lowest
exciton emission line of the trilayer, compared to the bilayer
that supports only dipolar excitons. In fact, a comparison
between recent experiments on a WSe2=MoSe2=WSe2
trilayer [37] with results on a WSe2=MoSe2 bilayer [57],
under similar temperature and illumination conditions,
shows a 40 meV difference—in good agreement with our
predictions.
More generally, our theoretical predictions [Fig. 2(c)]

are not unique to the specific WSe2=MoSe2=WSe2 hetero-
structure. In principle, it can be realized in many other
trilayer heterostructures of two materials that form a type-II
band alignment, and also in three monolayers of the same
material separated by insulating spacer layers, with a bias
applied between the middle layer and the two lateral layers.
Similar potentials can also be designed in semiconductor
quantum wells based on, e.g., GaAs and AlAs compounds.
In addition, properties such as the dipole length and Δ�,
are tunable in each specific structure (by applying an electric
gate or pressure). Experiments with different three-layer
systems may explore different regimes of the phase diagram.
To summarize, we present a trilayer system as a striking

example for the possible rich quantum physics in a system
where the single particle properties and the many-body
state are no longer separate entities, but rather dynamically
coupled through the particle interactions. In the single
exciton limit we predict the emergence of a new type
of interlayer excitons with a finite electric quadrupole
moment. At finite exciton densities, our simple model
suggests unique phase transitions that change both the Ising
(layer) and lattice symmetries, and the intrinsic nature of
each interlayer exciton.
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