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The temporal evolution of the magnetic field associated with electron thermal Weibel instability in
optical-field ionized plasmas is measured using ultrashort (1.8 ps), relativistic (45 MeV) electron bunches
from a linear accelerator. The self-generated magnetic fields are found to self-organize into a quasistatic
structure consistent with a helicoid topology within a few picoseconds and such a structure lasts for tens of
picoseconds in underdense plasmas. The measured growth rate agrees well with that predicted by the
kinetic theory of plasmas taking into account collisions. Magnetic trapping is identified as the dominant
saturation mechanism.
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Generation and amplification of magnetic fields in
plasmas is a long-standing topic that is of great interest
to both fundamental and applied physics. One well-known
mechanism is the Weibel instability [1] that arises in
plasmas with anisotropic electron velocity distribution
(EVD). Magnetic fields are self-generated and rapidly
amplified due to the self-organization of the microscopic
plasma currents in anisotropic plasmas [2]. As the insta-
bility grows, the strength, wave vector spectrum, and
topology of the magnetic field evolve as a result of the
continuous merging of currents [3]. The Weibel magnetic
field may be responsible for seeding subsequent turbulence
generation [4] and dynamo amplification in galactic plas-
mas [5]. Scenarios where the Weibel instability is thought
to play a role include astrophysical phenomena such as
gamma-ray bursts [6,7], relativistic jets in active galactic
nuclei [8], neutrino winds [9], and collisionless shocks
[10,11]; laboratory plasmas involved in inertial confine-
ment fusion [12–14], laser-driven shocks [15–19], plasma-
based particle acceleration [20–22]; and matters at extreme
conditions such as electron-positron [23,24] and quark-
gluon plasmas [25].
A particular type of Weibel instability driven by inter-

penetrating streams of beams or plasmas (also referred to as
current filamentation instability, CFI) has been investigated
in experiments by either passing a relativistic electron beam
through a plasma [26,27], driving locally heated electrons
through solid-density plasmas [4,28–30], or by creating
two counterpropagating plasmas [16–19]. In these experi-
ments, the characteristic filamentary magnetic field struc-
tures are purported to have been observed in either the
electron beam itself [26], in the external probe beam of
protons [16,17], or by using optical polarimetry [4,28,29].

However, few experiments have been able to capture the
temporal evolution of the Weibel-CFI instability including
its exponential growth, saturation, and damping. On the
other hand, in spite of being one of the earliest kinetic
plasma instabilities that has been discovered, the original
concept of electron Weibel instability driven by a temper-
ature anisotropy in a stationary, unmagnetized plasma
(often referred to as thermal Weibel instability [31]) has
thus far not been observed to our knowledge.
In this Letter, we use an optical-field ionized (OFI)

plasma to initialize a known anisotropic EVD and then
make picosecond-time-resolved measurements of the
growth, saturation, and damping of the electron thermal
Weibel instability.
The sketch of the experimental setup is shown in Fig. 1.

A circularly polarized, ultrashort (τ ≈ 50 fs FWHM) Ti:
sapphire laser pulse (λ0 ≈ 800 nm) was focused to a
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FIG. 1. The schematic drawing of the experimental setup.
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22� 1 μm diameter spot to ionize helium gas emanating
from a supersonic nozzle. The laser was intense enough
(∼2.5 × 1017 W=cm2) to rapidly ionize both electrons of
the helium atoms during the rise time of the pulse through
tunnel ionization [32] to generate a plasma with electron
density in the range of ð0.3 − 1.5Þ × 1019 cm−3 but without
driving significant amplitude plasma wakes. The plasma
was inferred to have a ∼200 μm diameter and the central
∼100 μm region was fully ionized (see Supplemental
Material [33]). A relativistic, ultrashort electron bunch
probe (E ≈ 45 MeV, ΔE=E ∼ 0.5%, ϵ ≈ 1 mmmrad,
τFWHM ≈ 1.8 ps), containing ∼30 pC charge (too small
to excite measurable wakefield) was orthogonally incident
on the plasma (see Supplemental Material [33] and [34]
for the beam configuration). Deflections caused by fast-
oscillating fields (e.g., wakes) were not detected since
τprobe ≫ 1=ωp [35,36]. In other words, the probe electrons
were deflected by the v ×B force exerted by the quasistatic
magnetic fields in the plasma. These deflections translated
into a density modulation that was captured by a thin
scintillator screen and the subsequent imaging system (see
Supplemental Material [33]).
The OFI plasma was intrinsically highly anisotropic

with A≡ T⊥=Tk − 1 ≫ 1 due to the fact that electrons pick
up energy from the laser field predominantly along the
polarization direction when the laser is gone. Here T⊥ and
Tk are the effective transverse and longitudinal temper-
ature, respectively, and A is the plasma anisotropy. In
addition to the large anisotropy, the initial transverse EVD
of the OFI helium plasma consists of two concentric rings
in the momentum space, as shown and measured in a recent
experiment [37]. In such a plasma there follows a hierarchy
of kinetic instabilities that begins with largely electrostatic
two-stream and the oblique current filamentation instabil-
ities which have been measured with 100 fs resolution
using Thomson scattering [38]. These instabilities not
only reduce the plasma anisotropy rapidly from initially
>100 to ∼10 in just 1 ps but also lead to approximately bi-
Maxwellian plasma electrons with T⊥ ≈ 500 eV and Tk ≈
40 eV as observed in previous particle-in-cell (PIC) sim-
ulations [39]. Such a bi-Maxwellian EVD will be ideal for
the growth of the Weibel instability which is predominantly
an electromagnetic instability.
Representative snapshots of the probe electron bunch

after it had traversed the plasma taken at different delays
with respect to the ionization laser are shown in Fig. 2(a).
See Supplemental Material for the full dataset [33]. Here t0
is defined as the time when the electron beam overlaps with
the laser at the interaction point, which was at the center of
the camera view. The uncertainty of t0 was estimated to be
within 3 ps and the temporal resolution was ∼2 ps (see
Supplemental Material [33]). The timing jitter between the
ionizing laser pulse and the electron bunchwas∼0.1 ps [40].
The raw data in Fig. 2(a) show both large-scale and

small-scale structures in the electron density images.

To separate them, we average each snapshot line by line
to smear out the vertically aligned small-scale structures
and therefore what left is the contribution from large-scale
fields in the plasma, as shown in Fig. 2(b). Possible sources
of the large-scale structures and their effects on data
analysis are discussed in Supplemental Material [33].
The deflection of probe electrons by the Weibel magnetic
fields (By component; see below) sits on top of these large-
scale structures. Therefore, we can treat each shot in Fig. 2(b)
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FIG. 2. (a) Time-resolved snapshots of the magnetic fields in
OFI plasmas. The raw data of the beam profile recorded at
increasing time delays are shown. (b) Reconstructed background
(see text). (c) Relative density modulation of the electron beam.
(d) The orientation of small magnetic field structures probed by
the electron beam at 4 ps are marked by the red dashed lines. The
magnetic field width integrated along z is shown on the right.
(e) Density dependence of the measured wavelength of the
magnetic field. The error bar is inferred using the FWHM width
of the integrated k spectrum. The inset shows the time-resolved k
spectrum of δn=n0.
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as the reconstructed single-shot background. In Fig. 2(c)
we show the calculated relative density modulation
δn=n0 ¼ ðn − n0Þ=n0, where n is the raw density profile
in Fig. 2(a) and n0 is the reconstructed background in
Fig. 2(b).
It can be clearly seen from Fig. 2(c) that the density

modulation magnitude of the probe beam grows from some
detection threshold level (δn=n0 ≳ 0.03 at t0) to peak at
about t ¼ 24 ps and then slowly drops in tens of pico-
seconds. The predominant wavelength remains almost
constant up to t ¼ 48 ps. Kinetic theory predicts that for
a given temperature anisotropy A, Weibel instability starts
growing with a wide range of unstable wave numbers,
0 < k <

ffiffiffiffi

A
p

ωp=c, with the wave vector pointing along
the cold temperature direction (ẑ) [41]. As the instability
grows, the initial broad k spectrum narrows due to the
self-organization (from merging of currents) of the mag-
netic fields. The expected initial broad k spectrum was not
captured in this experiment; nevertheless, some fine modal
structures are indeed visible at the early stage of the
instability, as shown in Fig. 2(d). Previous work has
predicted that for a plasma with similar bi-Maxwellian
EVD, the magnetic fields eventually evolve into a quasi-
static helicoid structure [31,42], in the form of B≈
x̂B0 cos kzþ ŷB0 sin kz. Probe electrons deflected by By ¼
ŷB0 sin kz appear as a series of vertical strips. There is no
contribution from Bx since vprobe ×Bx ¼ 0. Therefore the
density modulation recorded on the screen should appear as
a series of vertical strips as in Fig. 2(c). In other words, the
magnetic field topology inferred from the probe beam
deflections is consistent with a helicoid as expected from
the Weibel instability [31]. We note that the data suggest
that Bx;y has radial dependence, which implies that there
must exist Bz component to satisfy ∇ · B ¼ 0. However, as
shown in the Supplemental Material [33], Bz is small near
the axis of the plasma and therefore has negligible effects
on the analysis below.
In Fig. 2(e), we show the density dependence of the

magnetic field wavelength. Each data point is the average
wavelength calculated using the integration of the time-
resolved k spectrum shown in the inset. The green curve
shows the best fit to the data and gives the relation of
k ¼ 0.18� 0.01ωp=c. For a collisionless plasma, the most

unstable mode is km ¼ ffiffiffiffiffiffiffiffi

A=3
p

ωp=c [41]. This suggests that
the plasma anisotropy has dropped to a small value (A < 1)
when the signal becomes detectable in the experiment if
one assumes k ∼ km. As previously mentioned, such a
rapid drop is attributed to precursor instabilities such as
streaming and current filamentation instabilities as well as
collisions [38].
The temporal evolution of the deduced density modu-

lation magnitude [Fig. 2(c)] is shown in Fig. 3(a). The data
indicate a rapid growth, followed by peaking at around
20 ps, and then a slower decay. By fitting exponential

curves to the data (the dashed lines) assuming a constant
temperature anisotropy, we have extracted both the growth
and damping rates, which are shown in Figs. 3(b) and 3(c),
respectively. Without taking into account collisions, one
would expect the normalized growth rate in Fig. 3(b) to
be a constant since it is solely determined by A and Tk,
which are determined by the precursor instabilities.
Although the growth rates of the precursor instabilities
do depend on plasma density, by the time the Weibel
magnetic field becomes detectable the anisotropy level is
about the same as evidenced by the constant measured k ∼
ffiffiffiffiffiffiffiffi

A=3
p

ωp=c for different densities. It is known that colli-
sions tend to reduce the growth rate, and narrow the width
of the unstable spectrum toward smaller k [43,44]. The
growth rate taking into account collisions is γc ¼ γ0 − νe
using the Krook collision model [44], where γ0 is the
collisionless growth rate, νe ¼ ð1þ ZÞν0 is the collision

rate that includes both the electron-electron collisions νee ¼
ν0 ≈ 2.91 × 10−6ne lnΛT

−3=2
e and the electron-ion colli-

sions νei ¼ Zν0. Here Te ¼ ð2T⊥ þ TkÞ=3 is the effective
electron temperature, lnΛ the Coulomb logarithm, and Z
the charge state of the ions. Because of the dependence on
plasma density of the collision rate, νe=ωp ∝ ffiffiffiffiffi

ne
p

, the
collisional growth rate γc decreases with density. The time
for electrons to traverse the width of the plasma has
negligible effects on the instability growth compared to
collisions (see Supplemental Material [33]).
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FIG. 3. (a) Temporal evolution of the measured density
modulation. The error bar represents the standard deviation of
multiple shots. (b),(c) Density dependence of the deduced growth
and damping rate of the signal. The error bar represents the
standard deviation of the fitting coefficients in (a). The dashed
line in (b) is the fit using the growth rate taking into account
collisions (γc ¼ γ0 − νe; see text).
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The dashed line in Fig. 3(b) shows the best fit using the
expression of γc using the collisionless growth rate γ0 ¼
ð1.5� 0.3Þ × 10−3ωp and the effective electron temper-
ature Te ¼ 230� 50 eV. Here the uncertainty represents
the 1σ confidence level of the fitting coefficients. Since the
normalized collisionless growth rate γ0=ωp is determined
by the plasma temperatures Thot ¼ 3ðAþ 1ÞTe=ð2Aþ 3Þ
and Tcold ¼ 3Te=ð2Aþ 3Þ, we can further calculate the
plasma anisotropy as being A ≈ 0.48� 0.08 using γ0 and
Te, which then implies Thot ≈ 260 eV and Tcold ≈ 180 eV.
This anisotropy is consistent with the previous estima-
tion based on the measured small wave number. The
most unstable mode for these parameters is km ≈ 0.38�
0.04ωp=c for a collisionless plasma, which is within a
factor of 2 with the measured k ¼ 0.18� 0.01ωp=c, and
the agreement is even better if one considers that colli-
sions will reduce km. The measured effective temperature
is lower than that obtained from 3D PIC simulations
(Te;simu ≈ 350 eV; see details in Ref. [39]) using the
OSIRIS code [45]. It can be attributed to the fact that in
the experiment the low-temperature singly ionized region
of helium was larger due to the low-intensity wings of the
laser spot which lowers the effective plasma temperature.
The isotropization of the plasma (aided by collisions)

will terminate the growth of Weibel instability and even-
tually damp the magnetic fields. Figure 3(c) shows that the
magnetic field damps more rapidly in the low-density
plasma, indicating physical effects other than collisions
play a role. The lifetime of a quasistatic but periodic
magnetic field embedded in plasma (the so-called magneto-
static mode [46,47]) is of fundamental interest in plasma
physics, but it has not been possible to excite this mode in a
plasma until now to our knowledge. Our measurements
show that the saturated Weibel magnetic field is largely
periodic although it can be spatially chirped [see Fig. 4(a)].
This saturated state lasts for tens of picoseconds (damping
rate is ∼10−4ωp). Such a small damping rate implies that a
magnetostatic mode generated by other methods [47,48]
may similarly last for a sufficiently long time, making these
periodic magnetic fields useful as ultracompact undulators.
In Fig. 4(a) we have replotted the measured δn=n0 taken

at t ¼ 24 ps in Fig. 2(c) when the instability had saturated.
The blue line in Fig. 4(b) is the on-axis lineout of δn=n0
and the orange line is the calculated density modulation
using the magnetic field shown in Fig. 4(c). A parallel
probe beam with the experimental parameters was propa-
gated through a static magnetic field as in Fig. 4(c) and then
tracked in vacuum for 23 cm to generate the calculated
density modulation in Fig. 4(b). The magnetic field in the
probe direction was simplified as being uniform with a
FWHM width of ∼70 μm estimated using the transverse
size of the measured magnetic field in the orthogonal plane.
Figure 4(c) shows that the amplitude of the saturated
magnetic field is about 0.05 T.

A well-known saturation mechanism of Weibel insta-
bility is magnetic trapping, which assumes that the insta-
bility saturates when the electron bouncing frequency in the
magnetic field is on the same order of the growth rate.
Following this assumption, the saturated magnetic field is
expressed as eBsat=mecωp ∼ hc=vhotiðωp=kcÞ½γðkÞ=ωp�2,
where hc=vhoti denotes the average over the particle
distribution [41]. Substituting the measured k ¼ 0.18ωp=c
[Fig. 2(d)], growth rate [dashed line in Fig. 3(b)], and vhot ≈
0.02c (Thot ≈ 260 eV), we can calculate the saturated mag-
netic field amplitude as a function of plasma density, which
is shown by the orange curve in Fig. 4(d). We note that the
calculatedBsat has beenmultiplied by a factor of 0.5 tomatch
the data. This factor implies that the Weibel instability
saturates when the electron gyrofrequency reaches 70%
of the growth rate. This excellent agreement confirms the
consistency of the data, namely, the relatively smallmagnetic
field is due to the small growth rate at the small k, and Bsat
varies inversely with plasma density due to the density-
dependent growth rate caused by collisions. We note that
alternative estimates of Bsat are also derived in literature (see
Ref. [41], and references therein), but these estimates do not
agree with the data (see Supplemental Material [33]).
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FIG. 4. (a) Measured density modulation when the instability
reaches saturation [the same shot in Fig. 2(c) at t ¼ 24 ps].
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In summary, we have made time-resolved measurement
on picosecond timescale of the growth, saturation, and
damping of the electron thermal Weibel instability in
underdense OFI plasmas using well-characterized relativ-
istic electron bunches as a probe. The data are consistent
with the magnetic fields self-organizing into a quasistatic
helicoid structure, thus confirming a long-standing predic-
tion of the kinetic theory of the Weibel instability. The
measured growth rates show density dependence that
agrees with the kinetic theory that takes into account
collisions using the Krook model. The saturation mecha-
nism is consistent with magnetic trapping. After saturation,
the Weibel magnetic fields damp exponentially at a rate
of ∼10−4ωp and last for tens of picoseconds with small
change in its wavelength. In addition, the new probing
technique we have demonstrated is suitable for exploring
a broad range of plasma phenomena such as magnetic
reconnection, annihilation, and island formation occurring
in magnetized plasmas and for studying astrophysical
phenomena in the laboratory.
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