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We study the spreading of a Newtonian fluid by a deformable blade, a common industrial problem,
characteristic of elastohydrodynamic situations. Here, we consider the case of a finite reservoir of liquid,
emptying as the liquid is spread. We evidence the role of a central variable: the wetting length lw, which sets
a boundary between the wet and dry parts of the blade. We show that the deposited film thickness e depends
quadratically with lw. We study this problem experimentally and numerically by integration of the
elastohydrodynamic equations, and finally propose a scaling law model to explain how lw influences the
spreading dynamics.
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The flapping of flags or the deformation of boat sails are
emblematic of the coupling of flexible sheets with a fluid
flow. Beyond these large-scale situations, there is a bloom-
ing interest for smaller systems, in which the forces
responsible for the deformation of the solid are viscous
instead of inertial. Such situations are encountered when a
fluid is confined by an elastic plate, for example, paper
sheets gliding on thin air just above the floor after falling
from a table [1].
The spreading or the scraping of liquids with a flexible

blade (Fig. 1) is another paradigmatic example of this class
of fluid-structure problems, with a rich nonlinear behavior
[1–3]. Flexible blade spreading is central in numerous
industrial processes such as paper coating, which inspired
early studies [4–8]. More recently, this problem has been
studied in the light of an elasticity-capillarity analogy [9]
and compared with another well-known system, dip coating
[10,11]. Following this approach, the elastic forces induced
by the local curvature of the sheet replace surface tension
forces [12–14]. An elastic Landau-Levich approach [12,13]
can be used to predict the film thickness as a function of the
blade properties. This method, which successfully modeled
selected experiments [12] is based on two assumptions:
(i) the blade is fully covered with liquid (which amounts to
neglecting capillarity) and (ii) while in motion, it is only
deformed over a length lx close to the tip. This internal
length is analogous to the dynamical meniscus length in dip
coating. However, in a large majority of everyday situa-
tions, such as the spreading of a paint on a wall, or cream on
the skin, the liquid reservoir is finite and the blade partially

wet. This introduces a new length scale, lw (as shown in
Fig. 1), and its existence challenges the Landau-Levich
approach. In this Letter, we evidence the central role of lw
on the spreading dynamics, and we analyze the similarities
and differences with dip coating.
A Newtonian fluid (here silicone oil) with viscosity η

ranging from 480 to 960 mPa s is spread on a horizontal
smooth PMMA plate by a soft blade made of PET plastic
(Mylar) (Fig. 1). The dynamic contact angles of oil on both
surfaces are denoted by δs and δb: in a typical experiment,
δs ≃ 100� 10°, and δb ≃ 15� 10°. The blade is cut in
a rectangular shape, with a constant width b ¼ 4 cm, a

FIG. 1. Experimental setup. A finite amount of fluid deposited
under an elastic blade is emptied by moving the substrate at a
constant speed V. The thickness of the deposited layer e is
measured by a profilometer. As the reservoir empties, the wetting
length lw diminishes, which impacts the deposit.
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length L of typically 6 cm and thickness u ¼ 125 or
250 μm. The upper part of the blade is clamped perpen-
dicularly to the surface, at a height H ¼ 0.46 L. This
clamping height ensures that the free edge of the blade is
exactly tangent to the surface in absence of liquid. It is also
the position for which the film thickness is the largest [12].
The rigidity B of the blade is determined by measuring
its deflection under its own weight [15]. B is typically
varied by a factor of 10 when changing the blade thickness,
with B ¼ 1.0� 0.1mNm for u ¼ 125 μm and B ¼ 7.1�
0.5 mNm for u ¼ 250 μm. Using B ¼ E�u3=12, we obtain
a modified Young modulus E� of the material, that already
includes the Poisson ratio correction. Experimentally,
E� ≃ 6.2 GPa, a value in good agreement with what is
expected for type A Mylar [16].
A known volume of liquid Ω0 (between 0.1 and 1.5 mL)

is deposited under the blade and then spread with a one-
way movement, by moving the substrate at a constant speed
V (2.5 < V < 10 mm=s). The thickness of the scraped
liquid film e is measured with an optical profilometer
(Keyence LJ-V7060K) positioned above the film, 2 mm
from the edge of the blade (Fig. 1). A laser sheet of length
16 mm (in the y direction) is projected onto the film, from
which the film thickness eðy; tÞ is measured as a function of
time t and position y. The liquid reservoir below the blade
slowly empties as oil is scraped over a distance of ≃10 cm.
One important variable here is the length of the blade in
contact with the liquid, which we call the wetting length lw
(as visible in Fig. 1). During an experiment, lwðtÞ varies
with time and typically diminishes by 2 cm as the reservoir
empties. It is measured from the side and from the top using
two optical cameras, at 10 frames= sec. The camera and the
profilometer are synchronized using an in-house Labview
program, so that e and lw are recorded simultaneously
during the spreading. The initial time t ¼ 0 corresponds to
the setting in motion of the horizontal stage.
In Fig. 2(a), the thickness e of a silicone oil film (with

viscosity η ¼ 960 mPa s) is mapped as a function of time t
and position y (y ¼ 0 corresponding to the center of the
film). The color code varies from e ≃ 0 (dark blue) up to
e ¼ 400 μm (bright yellow). Despite a small residual noise
due to multiple light reflections, the film thickness is
relatively uniform in the y direction along the width of
the blade: edge effects are only visible 2 mm from the
edges, as shown in Supplemental Material [17], Fig. 1. It
represents only 10% of the blade width. However, the film
exhibits very large variations with time. This is even more
striking when looking at the mean thickness eðtÞ, plotted in
white in Fig. 2(a). The film profile exhibits a sharp increase
in the first 6 sec, where the thickness grows from 0 to
230 μm. This corresponds to a transient state, associated
with the setting in motion of the liquid below the blade,
which was previously observed in similar systems [12].
However, the second part of the plot (corresponding to the
steady state) strongly differs from previous experiments.

We observe here a continuous reduction of the film thick-
ness e with time t—from 230 to 80 μm between 7 and 20 s.
The decrease of e with time is largest with the softest blade
and the more viscous fluids, and is observed for both
silicone oil and glycerine. We interpret this as a conse-
quence of the finite reservoir size. Indeed, as the liquid
empties, the length lwðtÞ of the blade effectively wet by the
liquid diminishes, which in turn impacts the film thickness
eðtÞ. This intimate relation between eðtÞ and lwðtÞ is
evidenced in Fig. 2(b), where eðlwÞ is measured for two
oils of viscosity η ¼ 480 (in gray) and η ¼ 960 mPa s (in
black). Data points are taken at a given time t, so that e and
lw are treated quasistatically. The markers indicate the
initial liquid volume Ω0, varied by a factor of 3. With η
fixed, the data for all Ω0 overlap, which indicates that the
film thickness only depends on the actual volume of the
reservoir at the time t—a quantity measured by lwðtÞ.
As shown in Fig. 2, the relation between e and lw
is nonlinear: e increases more slowly for larger lw.

(a)

(b)

FIG. 2. (a) Map of the central part of the film (with viscosity
η ¼ 960 mPa s) during the spreading, as a function of the width y
and time t. The color code varies from e ≃ 0 (dark blue) up to
e ¼ 400 μm (bright yellow). The white line shows the mean
thickness eðtÞ over the film width, as a function of time. (b) Film
thickness eðtÞ as a function of the wetting length lw at the same
time t, for two different oils with viscosity η ¼ 480 (gray) and
η ¼ 960 mPa s (black). The markers correspond to different
initial fluid volumes Ω0: filled circle∶Ω0 ¼ 0.21� 0.01,
filled triangle∶Ω0 ¼ 0.50� 0.03, and filled star∶Ω0 ¼ 0.60�
0.02 cm3. The continuous lines show the scaling law [Eq. (4)]
with prefactors 0.15 (for η ¼ 480) and 0.17 (for η ¼ 960 mPa s)
corresponding to the best fits. The dashed lines are the numerical
solutions. In both experiments, V¼ 5 mm=s, B ¼ 1.0 mNm,
and L ¼ 5.7 cm.
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In addition, a strong dependency of e with the fluid
viscosity η is observed: e increases by roughly 50% from
η ¼ 480 to η ¼ 960 mPa s.
To understand how the reservoir size influences the

spreading dynamics, we perform a full numerical study of
the experiment. Since e and lw evolve quasistatically with
time, we solve the hydroelastic equations statically, with a
constant lw as an input parameter. The geometry is split in
two zones: (i) the blade itself, which interacts with the fluid
below over a length lw (< LÞ and (ii) the free liquid film,
spread by the blade. In the following, the lubricated blade
shape and the free liquid film are modeled by two different
sets of equations [Eq. (1) and Eq. (2)], coupled by boundary
conditions at the tip of the blade. In both cases, the Reynolds
number Re in the liquid is small, Re ¼ ρeV=η < 10−3, and
the oil is highly confined,with lw ≫ e, which allow us to use
the lubrication approximation to describe the flow.
The blade shape is described as a large deflection problem,

using Euler’s elastica [18,19]. In the steady state, the bending
torque (expressed as a function of the curvilinear length s
along the blade) is equal to the torque Γ produced by the
external forces, which arise from the liquid below the beam.
The fluidmotion generates two forces: a lift, perpendicular to
the blade, due to the lubrication pressurep and a viscous drag
forcefv, locally tangent to the surface.Both are calculated by
solving the Stokes equation in the lubrication approximation
(see Supplemental Material [17]). We also include the
capillary forces arising from the liquid surface deformation
on the left and right parts of the wet area of the blade. They
exert a small torque on the blade and, more importantly,
impose the fluid pressure at s ¼ sw and s ¼ L through the
curvature of the liquid surface. Finally, theweight of the plate
is neglected. With these conditions, the derivative of the
torque balance Γ ¼ EIðdθ=dsÞ (denoting I the moment of
inertia of the blade and θ the local tangent angle of the blade
with respect to the vertical) writes

E�I
d2θ
ds2

¼b
Z

L

s
fv sin½θðsÞ−θðs0Þ�−pcos½θðsÞ−θðs0Þ�ds0;

ð1Þ

with b the width of the blade. We neglect the contribution of
capillary forces on the torque derivative dΓc=ds ∼ γb (with γ
the surface tension of the liquid), which is more than 100
times smaller than the contribution of the lubricating film
dΓv=ds ∼ pblw (see Supplemental Material [17]).
In a second part, the free surface of the liquid deposited

by the blade is calculated through the canonical Landau
Levich equation (following Ref. [2]). The variables of the
free surface are distinguished here from those of the blade
by using an index l):

d2θl
ds2

¼ −
3η

γ

�
Vhl − q=b

h3l

�
sin θlðsÞ; ð2Þ

with hl the film height, and q the flow rate of the liquid in
the reference frame of the blade.
Equations (1) and (2) can both be seen as 1D steady-state

nonlinear heat equations, where θ is equivalent to tempera-
ture, with a conductivity equal to 1 and a source distribution
S½s; θðsÞ� corresponding to the right-hand side of the
equations. We use this analogy to solve the set of coupled
equations (1) and (2) (for the lubricated blade and for the
deposited film). To do so, we look for the stationary
asymptotic solution to a transient heat equation [Eq. (3)]
associated to Eqs. (1) and (2), where the derivative of θ
versus a virtual time τ is added (the volumetric heat
capacity is chosen unitary):

dθ
dτ

¼ d2θ
ds2

þ SðsÞ: ð3Þ

Starting from an initial guess of the shape (θðsÞ and θlðsÞ)
and pðs ¼ LÞ, Eq. (3) is solved numerically by finite
differences using a semi-implicit scheme [20]. The non-
linear source term SðsÞ is treated explicitly while the rest is
treated implicitly (see Supplemental Material [17] for the
details). This scheme is stable, and thus ensures conver-
gence to the stationary solution θðsÞ (according to Lax
equivalence theorem [21]), for a given set of input variables
lw, δs, and δb. Two sets of boundary conditions complete
this modeling. For the blade, the fixed mounting imposes
θð0Þ ¼ 0, and the absence of torque at the tip gives
dθ=dsjs¼L ¼ 0. For the free surface, the Laplace pressure
equation imposes dθl=dsjL ¼ −pðs ¼ LÞ=γ at the contact
of the blade tip, while far from the blade the film is
horizontal, so that limx→þ∞ θl ¼ π=2. Finally, the matching
of the two solutions is done iteratively by imposing a
continuity of the flow rate q. The liquid height at s ¼ L is
continuous [3], but there is an angle discontinuity, similar
to what happens at a three phase contact line.
Integration of the blade and deposited film equations

thus give the film thickness e for a given lw, corresponding
to the height of the free surface hl for x → ∞. In Fig. 2, the
calculated film thicknesses (black and gray dashed lines)
are compared to the experiments for varying wetting
lengths lw. They match the experimental data for both
η ¼ 480 and η ¼ 960 mPa s, without any adjustable para-
meter. In addition, the numerical solution of the blade shape
[Eq. (1)] also matches the experiments, as shown in the
Supplemental Material [17].
How does the wetting length influence the spreading

dynamics? Since the presence of a meniscus below the
blade induces a pressure jump at s ¼ sw, a first hypothesis
is that the dependency of e with lw results from an
elastocapillary competition [22,23]. To check this idea,
we compare in Fig. 3 numerical simulations of eðlwÞ in two
different configurations: in absence of a pressure jump in
s ¼ sw (gray line), and for varying wetting conditions
(dotted lines). A major observation from Fig. 3 is that e
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varies with lw even when capillary forces are absent. This
indicates that the pressure jump at the meniscus does not
cause the dependency of e with lw. Wetting conditions only
have a small influence on the film thickness, by shifting the
eðlwÞ curves: the dotted lines correspond to varying contact
angles δs and δb on the surface and on the blade (as in
Fig. 1). While e is potentially increased by a factor two
when comparing the almost perfect wetting ðδs¼δb¼10°Þ
to the nonwetting situation (δs ¼ δb ¼ 170°), the latter is
highly unlikely as the film would be unstable and dewet the
substrate. In classical wetting configurations (green and red
plots), capillary forces cause a modest variation of e, close
to 20%.
A second hypothesis is that the dependency of e with lw

arises from a modified balance between viscous and elastic
forces. Indeed, due to the finite size of the reservoir, the
pressure within the sheared film applies over a variable
distance lw, so that the viscous force lifting the blade
diminishes as the reservoir empties. Under this assumption,
we propose a scaling law for the film thickness e. The
region of the blade wet by oil (of size lw) is submitted to a
lubricating pressure p ∼ ηðV=e2Þlw. p thus induces a
torque Γwet, pushing up the wet part of the blade (of area
blw). The lever arm is ∼L − lw, so that Γwet writes
Γwet ∼ ηðV=e2Þbl2wðL − lwÞ. At equilibrium, this torque is
compensated by the rigidity of the dry part of the blade,
inducing a resisting torque Γdry ∼ E�Iðdθ=dsÞ ∼ E�I=
ðL − lwÞ. The torque balance sets the deposition law:

e ∼ lw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηVL2b
E�I

r �
1 −

lw
L

�
: ð4Þ

This scaling law is plotted in Fig. 2(b) (with a continuous
line). It very convincingly reproduces the dependency of

the film thickness e with both lw and η. The best fits are
obtained with similar prefactors: 0.15 for η ¼ 480 and 0.17
for η ¼ 960 mPa s.
To further validate our approach, we summarize in Fig. 4

the film thickness measurements for different blade rigidi-
tiesB and lengthL, varying liquid viscosity η and spreading
velocity V (respectively, varied by a factor 8, 0.3, 2, and 4).
Each color corresponds to a different set of parameters (see
legend). When plotted as a function of the theoretical film
thickness, all data collapse on a single line with slope 0.17.
The numerical solution of the elastohydrodynamic equa-
tions [Eqs. (1) and (2)] is also shown with white squares.
Here, the same parameters (V, η, B) as the experiments are
used, and capillarity is neglected. The numerical results also
collapse on the same master curve, which is a further
validation of the scaling law: it shows that the essential
physical parameters are taken into account. The residual
scattering of the data might be explained by the influence of
capillary forces, neglected in Eq. (4), which induce a small
variation of the dynamic contact angles with V [24,25].
The scaling law evidences the fundamental impact of the

wetting length lw, and allows us to put a central point
forward. With a finite reservoir, the viscous forces of the
lubricated film are exerted over an externally imposed
distance lw that varies during the spreading. This is funda-
mentally different from the capillary-elasticity analogy
approach, where the pressure applies over an internal
dynamical length lx ∼ ðeL2Þ1=3 [9,12] varying with the
blade and liquid parameters. This in turn impacts the scaling

FIG. 3. Effect of wetting on eðlwÞ. The continuous gray line
corresponds to the absence of a pressure jump pðswÞ ¼ 0. The
green, red, and yellow dotted lines show three different wetting
configurations with varied contact angles δs and δb on the
substrate and on the blade. The numbers indicate the pressure
jump pðswÞ due to the meniscus (in Pa).

FIG. 4. Experimental (colored dots) and numerical (white
squares) film thickness, plotted as a function of the theoretical
thickness [Eq. (4)]. All points collapse on a line (in black) with
numerical prefactor of 0.17. Data correspond to varying velocities
V ¼ 2.5 (light blue), 5 (blue, yellow, purple), 7.5 (dark green),
and 10 mm=s (red, fuchsia pink, light green), viscosities η ¼ 960
(purple, light green) and 480 Pa s (all other colors), blade
rigidities B ¼ 7.1� 0.5 (light green and fuchsia pink) and 1.0�
0.1 mNm (all other colors) and lengths L ¼ 7 (yellow, fuchsia
pink, light green) and 5.7 cm (all other colors).
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of the film thickness, which writes e ∼ LðηVbL2=E�IÞ3=4 in
the blade-meniscus analogy [12–14]. In addition, the blade
is here deformed by the film over its whole length, as visible
in Supplemental Material [17], Fig. 3, contrary to the
meniscus in dip-coating experiments. For this reason, the
blade shape cannot be solved using an asymptotic matching,
as usually done for a liquid interface.
This study has an important applicative scope: we indeed

demonstrate that it is impossible to obtain a deposit of
constant thickness with an elastic blade if the spreading is
done at constant speed. In addition, we evidence the role of
capillarity, which only plays a role for very hydrophobic
substrates. Our work also suggests that the analogy
between elastic and capillary interfaces is not valid when
the blade is not fully covered with liquid.
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